About the classification of launch equipment of the space launch systems for the strength standards justification

1Degtyarev, AV, 2Pylypenko, OV, 2Gudramovych, VS, 1Sirenko, VN, 2Daniev, Yu.F, 1Klimenko, DV, 3Poshivalov, VP
1Yangel Yuzhnoye State Design Office, Dnipropetrovsk, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
3Institute of Technical Mechanics of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Space Sci.&Technol. 2016, 22 ;(1):03-14
https://doi.org/10.15407/knit2016.01.003
Publication Language: Russian
Abstract: 
We suggest an approach to the classification of Launch Equipment of the Space Launch Systems for the strength standards   justification, which is based on the hierarchical method. We analyze the prediction of the loads, which appear during operation of the Launch Complex structural elements.
References: 
1. Bezruchko K. V., Davidov A. O., Svisch V. M., Kharchenko A. A. Classification and comparative characteristics of the launching site of modern carrier rockets. Aerospace technic and technology, N 10, 33—37 (2010) [in Russian].
2. Beloshenko B. G., Safronov A. V., Hotuljov V. A., Shuvalova T. V. Gas dynamics of launch from "Gagarin" booster rocket "Vostok" up to the space rockets at the "Vostochnyj" (Gazodinamika starta: ot «Gagarinskoj» rakety-nositelja «Vostok» do raket kosmicheskogo naznachenija na poligone «Vostochnyj»). Cosmonautics and Rocket Engineering, N 2, 168—175 (2011) [in Russian].
3. Birjukov G. P., Kobelev V. N. Fundamentals of rocket and space complexes design (Osnovy postroenija raketno-kosmicheskih kompleksov), 294 p. (MATI im. K. Je. Ciolkovskogo, Moscow, 2000) [in Russian].
4. Birjukov G. P., Smirnov V. I. Some theoretical aspects of rocket-space complexes design (Jelementy teorii proektirovanija raketno-kosmicheskih kompleksov), 288 p. (MAI, Moscow, 2003) [in Russian].
5. Wheelsets of locomotives and motor-powered units. Strength’s calculations and tests: HOST 31373–2008 from 1st September 2009, 12 p. (Standartinform, Moscow, 2009) [in Russian].
6. Hudramovich V. S. The theory of creep and its application to calculation of elements of thin-walled structures. (Teorija polzuchesti i ejo prilozhenija k raschetu jelementov  tonkostennyh konstrukcij), 224 p. (Nauk. dumka, Kiev, 2005) [in Russian].
7. Hudramovich V. S. Contact interaction of the elements of extended non-uniform shell structures by using physical models of nonlinearity (Kontaktnye vzaimodejstvija jelementov protjazhennyh neodnorodnyh obolochechnyh konstrukcij pri ispol'zovanii modelej fizicheskoj nelinejnosti. X Vserossijskij s#ezd po fundamental'nym problemam  teoreticheskoj i prikladnoj mehaniki), Nizhnij Novgorod, Russia, 2011: izb. tez. dokl., P. 57—59 (NGU, Nizhnij Novgorod, 2011) [in Russian].
8. Hudramovich V. S. Simulation of stress-strain state of the shell designs of missile technology and energy (Modelirovanie naprjazhenno-deformirovannogo sostojanija  obolochechnyh konstrukcij raketnoj tehniki i jenergetiki). Tekhnicheskaya Mekhanika, N 4, 97—104 (2013) [in Russian].
9. Hudramovich V. S., Gerasimov V. P., Konovalenkov V. S., Poshivalov V. P. Limit states shells under complex loading and creep.(Predel'nye sostojanija obolochek pri slozhnom nagruzhenii  i polzuchesti materiala), 254 p. (Nauk. dumka, Kiev, 1984) [in Russian].
10. Hudramovich V. S., Pereverzev E. S. The bearing capacity and durability of structural elements. (Nesushhaja sposobnost' i dolgovechnost' jelementov konstrukcij), 284 p.  (Nauk. dumka, Kiev, 1981) [in Russian].
11. Daniev Yu. F., Demchenko A. V., Zevako V. S. et al. Spacecrafts. Introduction to space technology (Kosmicheskie letatel'nye apparaty. Vvedenie v kosmicheskuju tehniku), Ed. by A. P. Petrenko, 456 p. (Dnepropetrovsk: ART–PRESS, 2007) [in Russian].
12. Degtyarev A. V. Way of missile systems modernization (Puti modernizacii raketnyh kompleksov), Tekhicheskaya Mekhanika, N 2, 23—29 (2011) [in Russian].
13. Konyukhov A. S. Dynamic Simulation Model of Liquid-Propellant Packet Scheme Launch Vehicles, Strength of Materials, N 2, 138—147 (2015) [in Russian].
14. Konjuhov S. N., Mashhenko A. N., Pappo-Korystin V. N. et al. Rockets and spacecrafts of the “Yuzhnoye” Design Bureau (Rakety i kosmicheskie apparaty Konstruktorskogo bjuro «Juzhnoe»), Ed. S. N. Konjuhov, 260 p. (KIT, Kiev, 2004) [in Russian].
15. Сosmodrome (Kosmodrom), Ed. A. P. Vol'skiy, 309 p. (Voen izdat, Moscow, 1977) [in Russian].
16. Lapygin V. I., Safronov A. V., Hotuljov V. A. Methods of mathematical modeling in research of launch vehicle start (Metody matematicheskogo modelirovanija v issledovanijah problem starta raket-nositelej). Cosmonautics and Rocket Engineering, Is.17, 74—86 (1999) [in Russian].
17. Marchuk M., Sirenko V., Kharchenko V., and Khomyak M. Calculation method of layered composite membranes for the presence of defects at the interface (Metod rozrahunku sharuvatyh kompozytnyh obolonok za najavnosti defektiv na poverhnjah rozdilu). Suchasni problemy mehaniky i matematyky, Eds. R. M. Kushnir, B. J. Ptashnyk, Vol.1, P. 42—44 (IPPMM im. Ja. S. Pidstrygacha NAN Ukrai'ny, Lviv, 2013) (Vols. 1-3; Vol. 1) [in Ukrainian].
18. Mesarovich M.D., Macko D., and Takahara Y. Theory of hierarchical multilevel systems, Transl. from Eng., 344 p. (Mir, Moscow, 1973) [in Russian].
19. Mossakovskij V. I., Hudramovich V. S., Makeev E. M. Contact interaction of the elements of shell structures. (Kontaktnye vzaimodejstvija jelementov obolochechnyh  konstrukcij), 288 p. (Nauk. dumka, Kiev, 1988) [in Russian].
20. Pilipenko O. V. Accounting nonequilibrium phase transitions in the mathematical model of two-phase fluid flow in a cylindrical pipe (Uchjot neravnovesnyh fazovyh prevrashhenij v matematicheskoj modeli dvuhfaznogo techenija zhidkosti v cilindricheskom truboprovode), Tekhicheskaya Mekhanika, N 1, 3—9 (2007) [in Russian].
21. Poshivalov V. P. Long-term strength and durability of structural elements (Dlitel'naja prochnost' i dolgovechnost' jelementov konstrukcij), 119 p. (Nauk. dumka, Kiev, 1992) [in Russian].
22. Solov'ev V. N. The space rocket complex «Zenit» through the eyes of its creators. (Kosmicheskij raketnyj kompleks «Zenit» glazami ego sozdatelej), 213 p. (MAI, Moscow, 2003) [in Russian]. 
23. Technological objects of ground infrastructure of space engineering: engineering handbook (Tehnologicheskie ob'ekty nazemnoj infrastruktury raketno-kosmicheskoj tehniki: inzhenernoe posobie.) Ed. I. V. Barmin, kn.1-2, 412 p; 376 p. (Poligrafiks RPK, Moscow, 2005) [in Russian]. 
24. Sixty years in rocketry and astronautics (Shest'desjat let v raketostroenii i kosmonavtike), Ed. A. V. Degtyarev, 540 p. (ART-PRESS, Dnepropetrovsk, 2014) [in Russian].
25. Hart E. L., Hudramovich V. S. Applications of the projective-iterative versions of FEM in damage problems for engineering structures, Maintenance-2012: 2th Int. conf.: Proceedings, P. 157—164 (Univ. of Zenica, Zenica, 2012).
26. Hudramovich V. S. Plastic and creep instability of shell with initial imperfections, Solid mechanics and its application, Ed. G. M. L. Gladwell, Proc. of IUTAM  Symp. Rheology of bodies with defects, China, 1999, Ed. Wan Reng, Vol. 64, 277—289 (Kluwer. Acad. Publ., Dodrecht; Boston; London, 1999).
27. Hudramovich V. S., Hart E. L., Klymenko D. V., Rjalokon S. A. Mutual influence of openings on strength of shell-type structures under plastic deformation. Strength of Materials, 45, 1, 1—9 (2013). 
https://doi.org/10.1007/s11223-013-9426-5
28. Hudramovich V. S., Lebedev A. A., Mossakovsky V. I. Plastic deformation and limit states of metal shell structures with initial shape imperfections. Light-weight steel and aluminium structures: Proc. of Intern. Conf., Finland, 1999, Ed. P. Makelainen, 257—263 (Elseiver, Amsterdam; Lausanne; New York; Tokyo, 1999).
https://doi.org/10.1016/b978-008043014-0/50133-5
29. Marchuk M., Kharchenko V., Klymenko D., Khomyak M. Mathematical model and method for calculation of layered composite shells of rotation with the delaminations. Intern. Conf. on Mechanics of Composite Materials (Riga, Latvia, 2014): book of abstracts, P. 126 , Riga, 2014).
30. Zienkiewicz O. C., Robert L. T., J. Zhu Z. The finite element method: Its basis and fundamentals. 6th ed., 752 p. (Elsevier, Amsterdam; London; New York; Paris; Sydney; Tokyo, 2005).