Determination of the temperature mode, duration of presence of the human adenovirus on orbital space stations and influence of clinorotation on some properties of the virus

Рубрика: 
1Nosach, LM, 1Dyachenko, NS, 1Tarassishin, LO, 1Zhovnovata, VL, 1Butenko, SI, 1Povnitsa, OYu.
1Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kiev, Ukraine
Kosm. nauka tehnol. 2003, 9 ;(1):096-101
https://doi.org/10.15407/knit2003.01.096
Язык публикации: Russian
Аннотация: 
It is found that the human adenovirus of type 2 is rather tolerant to the influence of temperature as it keeps infectivity during 60 days at a temperature from +20 to +22 °С and during 90 days at a temperature of +4 °С. Some fall decrease of antibody-binding activity of subgenus- and genusspecific antigenic determinates of hexon protein of the capsid of the virus is revealed at a temperature from +20 to +22 °С. The activity of both determinantes of the hexon of the adenovirus exhibited at a temperature of +4 °С during 10 and 20 days is kept practically completely. This testifies that the human adenovirus is suitable for space biology experiments aboard spacecrafts and this point should be taken into account at designing the «Virus» device in which the human adenovirus can be exhibited on the orbit at a temperature of +4 °С or from +20 to +22 °С. The temperature depends on space flight conditions but the first temperature mode is preferable for the preservation of the antigenic structure of the hexon. It is shown that the infectivity of the human adenovirus type 2 is kept under the conditions of horizontal clinorotation during 10—90days. At the clinorotation during 10 and 20 days, it is marked some decrease of antibody-binding activity of subgenus antigenic determinant of hexon. This is evidence for the certain stability of adenoviruses to microgravitalion and will allow one to isolate the influence of other factors under real space flight conditions.
Ключевые слова: clinorotation, human adenovirus, orbital space stations
References: 
1. Zhukov-Verezhnikov N. N., Maysky I. N., Pekhov A. P., Nefedieva N. N. Space microbiology. Mikrobiologija, 30 (5), 809—817 (1961) [in Russian].
2. Kordyum V. A., Polivoda L. V., Mashinsky A. L., Konshin N. I. Growth of microorganisms outside the Earth. In: The impact of space flight on the developing organism, 64—113 (Nauk. dumka, Kiev, 1978) [in Russian].
3. Kordyum E. L., Popova A. F., Konshin N. I. Ultrastructure of Proteus vulgaris cells grown in space flight conditions. In: The impact of space flight on the developing organism, 114—148 (Nauk. dumka, Kiev, 1978) [in Russian].
4. Sytnik K. M., Kordyum V. A., Kordyum E. L., et al. Microorganisms in space flight, 156 p. (Nauk. dumka, Kiev, 1983) [in Russian].
5. Nosach L. N., Dyachenko N. S. Cytopathology of adenovirus infection, 124 p. (Nauk. dumka, Kiev, 1982) [in Russian].
6. Tairbekov M. G., Parfenov G. P. Cell behavior in a gravitational field. Uspekhi Sovremennoi Biologii, 96, is. 3 (6), 426—434 (1983) [in Russian].
7. Tarasishin L. A. Detection of adenovirus antigens by enzyme immunoassay. Laboratornoe delo, No. 7, 66—88 (1990) [in Russian].
8. Chang D., Paulsen A., Johnson T. C., Consign' R. A. Virus protein assembly in microgravity. Adv. Space Res., 13 (7), 252—257 (1993).
https://doi.org/10.1016/0273-1177(93)90380-T
9. Cogoli A., Bechler B., Muller O., Hunzinger E. Effect of microgravity on lymphocyte activation. In: Proc. of the Norderney Symposium of Scientific Results of the German Spacelab Mission Dl, Norderney, Germany, 27-29 August 1986, 366—375 (Germany, 1986).
10. Duke P. J., Montufar-Solis D., Hamazaki T., Sato A. Clinorotation of micromass cultures of mouse limb bud cells reduces nodule numbers, but not size. In: Abstracts 31-st Scientific Assembly of COSPAR, 14-21 July, 1996, P. 307 (The University of Birmingham, England, 1996).
11. Hotchin J., Loreuz P., Hemenway C. Survival of microorganisms in space. Nature, 206 (4983), 442— 445 (1965).
https://doi.org/10.1038/206442a0
12. Kordyum E. L. Effects of altfered gravity on plant cell processes: results of recent space and clinostatic experiments. Adv. Space Rev., 14 (8), 77—85 (1994).
https://doi.org/10.1016/0273-1177(94)90388-3
13. Kornyushenkova I. N. Human microflora statement in spaceplights and ecological means of it's correction. In: Abstracts 31-st Scientific Assembly of COSPAR, 14—21 July, 1996, 307 p. (England, The University of Birmingham, 1996).
14. Lapchine L., Moatti N.. Richoilley G., et al. Antibacterial activity of antibiotics in space conditions. In: Proc. of the Norderney symposium on Scientific Results of the German Spacelab, Mission Dl, Norderney, Germany, 27-29 August 1986, 366—375 (Germany, 1986).
15. Tairbekov M. G., Gabova A. V. Cell culture in vitro in microgravity. In: Abstracts 31-st Scientific Assewbly of COSPAR, 14—21 July, 1996, 307 p. (England, The University of Birmingham, 1996).
16. Talas M., Batkai L., Stoger I., et al. Results of space experiment program «Interferon». Acta Microbiol. Hungarica, 30 (1), 53—61 (1983).

17. Viktorov A. N., Novikova N. D. Microbial evolution in orbital station environment in condition of multiyear exploration. In: Abstracts 31-st Scientific Assembly of COSPAR, 14—21 July, 1996, 307 p. (England, The University of Birmingham, 1996).