Prospects and main aspects of the GIS-technologies application for monitoring of biodiversity (on the example of the Chornobyl Radiation-Ecological Biosphere Reserve)

1Fedonyuk, TP, 1Galushchenko, OM, 1Melnichuk, TV, 2Zhukov, OV, 1Vishnevskiy, DO, 3Zymaroieva, AA, 1Hurelia, VV
1Chornobyl Radiation-Ecological Biosphere Reserve, village Ivankiv, Kyiv Region, Ukraine
2Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
3Polissia National University, Zhytomyr, Ukraine
Space Sci. & Technol. 2020, 26 ;(6):075-093
https://doi.org/10.15407/knit2020.06.075
Язык публикации: Ukrainian
Аннотация: 
We developed the conceptual model of the use of GIS technologies in the activity of natural reserve fund objects on the example of the Chornobyl Radiation-Ecological Biosphere Reserve. The GIS technologies is highly demanded due to the large area of the object, the complexity of the technogenic environment (radiation pollution), and the lack of a single database for the years preceding the creation of the Reserve. Therefore, the creation of the Reserve's geoportal is an important prerequisite for integrated dynamic monitoring of the environment and biodiversity.
         The functional diagram of the formation and usage of the Reserve spatial database components consists of three units. They are the unit of data filling (attribute information), the received information processing unit (filling layers), and the unit of information usage (cartographic material). At present, we have created the basis for the Chornobyl Radiation-Ecological Biosphere Reserve geoportal. The further filling of the geoportal is provided by the established process of data collection in frameworks of the main proposed thematic blocks: geological structure, topography, climate, water bodies, soils, flora, fauna, ecology, and landscapes’ diversity. The geoportal is the central platform of natural geographic and related information, which will be the key driver and the basis for management decisions in the field of environmental impact assessment, in the allocation of functional zones, zones of special control, delineation of areas of special scientific, security or other interest, planning of monitoring objects, test sites, wildlife migration corridors, etc.
Ключевые слова: biodiversity, Chornobyl Radiation-Ecological Biosphere Reserve, concept, geoportal, GIS technologies, natural reserve, strategy
References: 
1. Bezverkhnyuk T. N. (1999). A technique for constructing landscape maps using GIS technology. Scientific notes of TNU, 12(51), No. 1, 47—49 [in Russian].
2. United States Geological Survey. URL: http://earthexplorer.usgs.gov (Last accessed 26.03.2020).
3. Golubtsov O. G., Putrenko V. V., Chekhniy V. M., Farion Yu. M. (2010). Landscape GIS as the result of landscape-based applied awareness of the administrative region: methodical aspects. Geography and tourism, 10, 141—153 [in Ukrainian].
4. Gorban I. M., Koshovy V. V, Alyokhina O. V, Kursish I. Y. (2013). Application of GIS and methods of remote sensing of the Earth to assess the state of biodiversity of wetlands of international importance. Ecology of wetlands and peatlands: Coll.
Science. articles. Kyiv: DIA, 48 [in Ukrainian].
5. Grodzinsky M. D. (1993). Fundamentals of landscape ecology: Textbook. K.: Lybid, 224 p. [in Ukrainian].
6. Davidchuk V. S., Sorokina L. Yu., Rodina V. V. (2005). Geoinformation technologies in landscape mapping. Physical geography and geomorphology, № 47, 24—30 [in Ukrainian].
7. Zagorodnya S. A. (2016). Geoinformation technologies for ecological assessment of nature reserves. Ecological safety and nature management. 3-4, 87—93 [in Ukrainian]
8. Kruglov I. (1998). Geoinformation aspect of the organization of the state land cadastre of Ukraine. Budownictwo i Inzyneria Srodowiska (Rzeszów, Poland). 29, 85—93 [in Ukrainian].
9. Mkrtchyan A. S. (2006). Automated allocation of landscape units by relief classification using GIS. Landscape planning: general bases, methodology, technology. 18, 203—208 [in Russian].
10. Mkrtchyan O. S. (2006). Landscape-ecological bases of data integration into land information systems: Thesis for cand. geogr. sciences. Lviv National University named after Ivan Franko [in Ukrainian].
11. Peresadko V. A., Sinna O. I., Vyatkin K. V., Bodnya O. V. (2012). Geoinformation support of protected areas. Problems of continuing geographical education and cartography. 15, 74—77 [in Ukrainian].
12. Plaskalny V. V. (2012). Creation and use of elements of spatial databases Black Sea Biosphere Reserve. Geography and tourism. 18, 316—322 [in Ukrainian].
13. Chandrasekar K., Sesha Sai M. V. R., Roy P. S., Dwevedi R. S. (2010). Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. Int. J. Remote Sensing, 31(15), 3987—4005.
https://doi.org/10.1080/01431160802575653.
14. Corbane C., Lang S., Pipkins K., Alleaume S., Deshayes M., Millán V. E. G., Michael F. (2015). Remote sensing for mapping natural habitats and their conservation status–New opportunities and challenges. Int. J. Applied Earth Observation and
Geoinformation, 37, 7—16.
15. Finke L. (1993). Landscape ecology. Braunschweig: Westermann Schulbuchverlag GmbH.
16. Jensen J. R. (1986). Introductory Digital Image Processing. Englewood Cliffs, New Jersey: Prentice-Hall. 17. Keeley J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire, 18(1), 116—126.
18. Kunah O. M., Pakhomov O. Y., Zymaroieva А. А., Demchuk N. I., Skupskyi R. M., Bezuhla L. S., Vladyka Y. P. (2018). Agroeconomic and agroecological aspects of spatial variation of rye (Secale cereale) yields within Polesia and the Forest-
Steppe zone of Ukraine: The usage of geographically weighted principal components analysis. Biosystems Diversity, 26(4), 276—285.
https://doi.org/10.15421/011842.
19. Kunah O. M., Papka O. S. (2016). Ecogeographical determinants of the ecological niche of the common milkweed (Asclepias syriaca) on the basis of indices of remote sensing of land images. Visnyk of Dnipropetrovsk Univ. Biology, ecology, 24(1),
78—86.
https://doi.org/10.15421/011609.
20. Kussul N., Shelestov A., Skakun S., Basarab R., Yaylimov B., Lavreniuk M. S., Kolotii A., Yashchuk D. (2015). Retrospective regional level land cover map for Ukraine: methodology of development and results analysis. Space Science and Technology,
21(3), 31—39.
21. Lyalko V. I., Kostyuchenko Yu. V., Artemenko I. G., Popadjuk L. M., Fedyna R. M., Voloshanenko A. S. (2013). Anuncertainty analysis in the climatic change estimation problem on regional level with the use of satellite observations of atmospheric
concentration of greenhouse gases. Space Science and Technology, 19(6), 18—26.
https://doi.org/10.15407/knit2013.06.018
22. Movchan D. M. (2013). Estimation of Ukrainian forest cover (Western Polissia) using remote sensing data. Space Science and Technology, 19(4), 29—43.
https://doi.org/10.15407/knit2013.04.029
23. Olahova J., Vojtek M., Boltiziar M. (2013). Application of geoinformation technologies for the assessment of landscape structure using landscape-ecological indexes (case study of the Handlov landslide). Tajokológiai Lapok, 11(2), 351—366.
24. O’Neill R. V., Riitters K. H., Wickham J. D., Jones K. B. (1999). Landscape pattern metrics and regional assessment. Ecosystem health, 5(4), 225—233.
25. Rodríguez I., Montoya I., Sánchez M. J., Carreño F. (2009). Geographic information systems applied to integrated coastal zone management. Geomorphology, 107(1-2), 100—105.
26. Romanchuck L. D., Fedonyuk T. P., Fedonyuk R. G. (2017). Model of influence of landscape vegetation on mass transfer processes. Biosystems Diversity, 25(3), 203—209. doi:10.15421/011731.
27. Romanchuk L. D., Fedonuk T. P., Khant G. O. (2017). Radiomonitoring of plant products and soils of Polissia during the long-term period after the disaster at the Chornobyl Nuclear Power Plant. Regulatory Mechanisms in Biosystems, 8(3),
444—454.
https://doi.org/10.15421/021769.
28. Tomchenko O. V. (2014). Using remote sensing imagery and ground-based observations for integrated assessment of the Kyiv reservoir’s ecosystem services on the basis of analytic hierarchy process. Space Science and Technology, 20(5), 41—49.
29. Tucker C. J. (1979). Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ., 8(2), 127—150.
https://doi.org/10.1016/0034-4257(79)90013-0.
30. Van Deventer A. P., Ward A. D., Gowda P. H., Lyon J. G. (1997). Using Thematic Mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. and Remote Sens., 63, 87—93.
31. Xu H. (2006). Modification of normalised difference water index (NDWI) to enhanceopen water features in remotely sensed imagery. Int. J. Remote Sens., 27(14), 3025—3033.
32. Zhukov A. V., Sirovatko V. O., Ponomarenko N. O. (2017).Spatial dynamic of the agriculture fields towards their shape and size. Ukr. J. Ecology. 7(3), 14—31.
https://doi.org/10.15421/2017_45.
33. Zhukov O. V., Kunah O. M., Taran V. O., Lebedinska M. M. (2016). Spatial variability of soils electrical conductivity within arena of the river Dnepr valley (territory of the natural reserve «Dniprovsko-orilsky»). Biological Bulletin of Bogdan Chmelnitskiy
Melitopol State Pedagogical University, 6 (2), 129—157.
34. Zhukov O. V., Pelina T. O., Demchuk O. M., Demchuk N. I., Koberniuk S. O. (2018). Agroecological and agroeconomic aspects of the grain and grain legumes (pulses) yield dynamic within the Dnipropetrovsk region (period 1966—2016). Biosystems
Diversity, 26(2), 170—176.
https://doi.org/10.15421/011826
35. Zhukov O. V., Ponomarenko S. V. (2017). Spatial-temporal dynamics of sunflower yield – the ecological and agricultural approach. Ukr. J. Ecology, 7(3), 186—207.
36. Zymaroieva A., Zhukov O., Fedonyuk T., Pinkina T. (2020). The spatio-temporal trend of rapeseed yields in Ukraine as a marker of agro-economic factors influence. Agronomy Res., 18(S2), 1584—1596. doi: 10.15159/AR.20.119.