Physics of geospace storms

1Chernogor, LF
1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Space Sci. & Technol. 2021, 27 ;(1):03-77
https://doi.org/10.15407/knit2021.01.003
Язык публикации: Ukrainian
Аннотация: 
A review of our knowledge about the coupling of solar-terrestrial processes, manifestations of geospace storms, and variations in space weather is presented. Space weather effects are analyzed within the system paradigm concept. The system where geospace storms occur is a Sun–interplanetary medium–magnetosphere–ionosphere–atmosphere–Earth (interior spheres) aggregate (SIMMIAE). An early twenty-first- century geospace superstorm that occurred on November 7 – 10, 2004, is examined in detail. Clustered instrument observations of this storm effects are presented. The investigation of the physical effects of geospace storms is noted to be the most important field of study in space geophysics. The problem of subsystem coupling in the SIMMIAE system during a geospace storm is interdisciplinary in nature. Its solution requires an application of the system approach. The problem has a multifactor character. The subsystem response is determined by the simultaneous (synergetic) impact of a few disturbing factors. It is important to note that the SIMMIAE is an open, nonlinear, and nonstationary system. Within it, direct coupling and feedback processes, positive and negative linkages operate. Due to the myriads of manifestations of geospace storms, because of the unique nature of each storm, the investigation of occurring physical effects is far from complete.
             In addition to a thorough investigation of the storm’s physical effects, there is an urgent need to model and forecast the storms adequately and in detail. The solution to these problems will facilitate the survival and steady progress of our civilization, relying more and more on new state-of-the-art technology. The more technologically reliant our society is, the more vulnerable the civilization's infrastructure to solar and geospace storm impacts becomes. A classification of geostorms based on Akasofu's epsilon parameter has been advanced. Six types of geostorm have been introduced, and a geostorm index has been suggested. A classification of ionospheric storms and disturbances based on the magnitude of variations in the peak density of the F2 layer has been suggested. Five types of the ionospheric storm have been introduced. An ionospheric index characterizing the intensity of negative and positive ionospheric storms has been suggested. A classification of ionospheric storms and disturbances based on the magnitude of variations in the lower-ionosphere electron density has been proposed. Six types of the positive ionospheric storm have been introduced. The appropriate ionospheric index has been suggested. The physics-based model of the evolution of each group of ionospheric storms and disturbances has been determined. The linkages among magnetic, ionospheric, and atmospheric storms, as well as electric field disturbances, have been shown.
Ключевые слова: classification of geospace storms, experiment results, general effects, geospace storm, processes energetic, solar storms, statistic and classification of magnetic storms, statistics and classification of ionospheric storms, storm influence examples, system paradigm
References: 
1. Avakyan S. V., Voronin N. A., Dubarenko K. A. (2012). Influence of magnetic storms on the accident rate of power generation, automation and communication systems. Nauchno-tekhnicheskiye vedomosti StPbGU. Nauka i obrazovaniie, 3 (2), 253—265 [in Russian].
2. Avakyan S. V. (2008). Physics of the Solar — Terrestrial Coupling: Results, problems, and New Approaches. Geomagnetism and Aeronomy, 48 (4), 417—424.
https://doi.org/10.1134/S0016793208040014
3. Avdiushin S. I., Danilov A. D. (2000). The Sun, weather and climate: today’s view on the problem (overview). Geomagnetism and Aeronomy, 40 (5), 3—14.
4. Akasofu S.-I., Chapman S. (1972). Solar-Terrestrial Physics. Oxford U.P., London.
5. Akasofu S.-I., Chapman S. (1972). Solar-Terrestrial Physics.Oxford U.P., London.
6. Afraimovich E. L., Voeykov S. V., Perevalova N. P., Ratovsky K. G. (2006). Large-scale disturbances of auroral origin during strong magnetic storms of October 29—31, 2003, and November 7—11, 2004, according to the data of the GPS network and ionosondes. Geomagnetism and Aeronomy, 46 (5), 603—608.
https://doi.org/10.1134/S0016793206050070
7. Afraimovich, E. L., Kosogorov, E. A., Leonovich. L. A., Pirog O. M. (2002). Global pattern of large-scale ionospheric disturbances during the magnetic storm of September 25, 1998, as inferred from GPS network data. Geomagnetism and Aeronomy, 42(4), 467—473.
8. Barkhatov N. A., Barkhatova O. M. (2012). Revealing the classes of ionospheric disturbances on the basis of multiyear data on the critical frequency of the F2 layer. Geomagnetism and Aeronomy, 52 (4), 510—518.
https://doi.org/10.1134/S0016793212040020
9. Belikovich V. V., Benediktov E. A., Vyakhirev V. D., Grishkevich L. V. (1980). Night ionization of the D region and of the midlatitude ionosphere in the period of magnetic storm. Geomagnetism and Aeronomy, 20 (3), 547—548 [in Russian].
10. Breus T. K., Baevskii R. M., Funtova I. I., et al. (2008). Effect of geomagnetic field disturbances on the adaptive stress reaction of cosmonauts. Cosmic Research, 46 (4), 367—372.
https://doi.org/10.1134/S0010952508040138
11. Breus T. K., Halberg F., Cornelissen G. (1995). Biological effects of solar activity. Biofizika. 40, 737—749 [in Russian].
12. Bryunelli B. E., Namgaladze A. A. (1987). Physics of the ionosphere. Moscow: Nauka Publ. [in Russian].
13. Burmaka V. P., Lysenko V. N., Chernogor L. F. (2005). Observation data on wave-like processes in ionosphere under quiet and disturbed conditions. Space Science and Technology, 11 (1/2), 37 — 57 [in Russian].
https://doi.org/10.15407/knit2005.01.037
14. Burmaka V. P., Taran V. I., Chernogor L. F. (2006). Wave-like processes in the ionosphere under quiet and disturbed conditions. 1. Kharkov incoherent scatter radar observations. Geomagnetism and Aeronomy, 46 (2), 183—198.
https://doi.org/10.1134/S0016793206020071
15. Burmaka V. P., Taran V. I., Chernogor L. F. (2006). Wave-like processes in the ionosphere under quiet and disturbed conditions. 2. Analysis of observations and simulation. Geomagnetism and Aeronomy, 46 (2), 199—208.
https://doi.org/10.1134/S0016793206020083
16. Burmaka V. P., Taran V. I., Chernogor L. F. (2005). Results of investigations of the wave disturbances in the ionosphere by noncoherent scattering. Adv. Modern Radiophys., 3 (4), 4—35 [in Russian].
17. Burmaka V. P., Chernogor L. F. (2011). Wave activity in the ionosphere during the geospace storm of November 7—10, 2004. Geomagnetism and Aeronomy, 51 (3), 305—320.
https://doi.org/10.1134/S0016793211030042
18. Burmaka V. P., Chernogor L. F. (2008). The wave-like disturbances in the ionosphere during vernal equinox in 2006. Space Science and Technology, 14 (4), 82—91 [in Russian].
https://doi.org/10.15407/knit2008.04.082
19. Vitinskiy Yu. P.(1983). Solar activity. Moscow: Nauka Publ., 193 p. [in Russian].
20. Vladimirskiy B. M., Temuryants N. A. (2000). Influense of solar activity on biosphere-noosphere. Мoscow: Pub. MNEPU, 374 p. [in Russian].
21. Vladimirsky B. M., Temuryants N. A., Martinuk V. S. (2004). Cosmic Weather and our life. Fryazino, 224 p. [in Russian].
22. Garmash K. P., Gokov A. M., Kostrov L. S., Rozumenko V. T., Tyrnov O. F., Fedorenko Yu. P., Tsymbal A. M., Chernogor L. F. (1999). Radiophysical Investigations and Modeling of Ionospheric Processes Generated by Sources of Various Nature. 2. Processes in a Modified Ionosphere. Signal Parameter Variations. Disturbance Simulation. Telecommunications and Radio Engineering, 53 (6), 1—22.
https://doi.org/10.1615/TelecomRadEng.v53.i6.10
23. Garmash K. P., Gokov A. M., Kostrov L. S., Rozumenko V. T., Tyrnov O. F., Fedorenko Yu. P., Tsymbal A. M., Chernogor L. F. (1999). Radiophysical Investigations and Modeling of Ionospheric Processes Generated by Sources of Various Nature. 1. Processes in a Naturally Disturbed Ionosphere. Technical Facilities, Telecommunications and Radio Engineering,53 (4—5), 6—20.
https://doi.org/10.1615/TelecomRadEng.v53.i4-5.20
24. Garmash, K. P., Rozumenko V. T., Tyrnov O. F., Tsymbal A. M., Chernogor L. F. (1999). Radio-propagation studies of the processes acting in the near-earth plasma disturbed by high-energy sources. Part 1. Foreign Radio Electronics. Progress in Modern Radio Electronics, No. 7, P. 3—15 [in Russian].
25. Garmash K. P., Rozumenko V. T., Tyrnov O. F., Tsymbal A. M., Chernogor L. F. (1999). Radio-propagation studies of the processes acting in the near-earth plasma disturbed by high-energy sources. Part 2. Foreign Radio Electronics. Progress in Modern Radio Electronics, 8, 3—19 [in Russian].
26. Herman J. R., Goldberg R. A. (1978). Sun, Weather, and Climate. Washington, D.C.: NASA.
27. Gokov A. M., Chernogor L. F. (2005). Electron density variations in the ionospheric D region at mid-latitudes during magnetic storms. Space Science and Technology, 11 (5/6), 12—21 [in Russian].
https://doi.org/10.15407/knit2005.05.012
28. Gokhberg M. B., Morgunov V. A., Pokhotelov O. A. (1988). Seismo-Electromagnetic Phenomena. Moscow: Nauka [in Russian].
29. Gokhberg M. B., Shalimov S. L. (2008). Impact of Earthquakes andExplosions on the Ionosphere. Moscow, Nauka [in Russian].
30. Grigorenko Ye. I., Emelyanov L. Ya., Pazura S. A., Chernogor L. F. (2007). Ionospheric processes during the 7—10 November 2004 extreme geospace storm. 1. Observation results. Space Science and Technology, 13 (4), 62—76 [in Russian].
https://doi.org/10.15407/knit2007.04.062
31. Grigorenko Ye. I., Pazura S. A., Chernogor L. F. (2007). Ionospheric processes during the 7—10 november 2004 extreme geospace storm. 2. Simulation results and discussion. Space Science and Technology, 13 (4), 77—90 [in Russian].
https://doi.org/10.15407/knit2007.04.077
32. Grigorenko E. I., Taran V. I., Lazorenko S. V., Chernogor L. F. (2003). Wave disturbances in the ionosphere accompanied the solar flare and the strongest magnetic storm of September 25, 1998. Geomagnetism and Aeronomy, 43 (6), 718—735.
33. Grigorenko E. I., Lysenko V. N., Pazyura S. A., Taran V. I., Chernogor L. F. (2007). Ionospheric disturbances during the severe magnetic storm of November 7—10, 2004. Geomagnetism and Aeronomy, 47 (6), 720—738.
https://doi.org/10.1134/S0016793207060059
34. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe. 1. Space Science and Technology, 13 (5), 58—76 [in Russian].
https://doi.org/10.15407/knit2007.05.058
35. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe. 2. Space Science and Technology, 13 (5), 77—96 [in Russian].
https://doi.org/10.15407/knit2007.05.077
36. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. (2005). F. Specific features of the ionospheric storm of March 20—23, 2003. Geomagnetism and Aeronomy, 45 (6), 745—757.
37. Grigorenko Y. I., Lysenko V. N., Taran V. I. Chernogor L. F. (2003). Radio studies of processes in the ionosphere associated with the strongest September 25, 1998 geomagnetic storm. Uspekhi sovremennoi radioelektroniki, 9, 57—94 [in Russian].
38. Grigorenko E. I., Pazura S. A., Taran V. I., Chernyaev S. V., Chernogor L. F. (2005). Dynamic processes in the ionosphere during the severe magnetic storm of May 30—31, 2003. Geomagnetism and Aeronomy, 45 (6), 758—777.
39. Danilov A. D., Kazimirovskiy E. S., Vergasova G. V., Khatchikjan G. Ja. (1987). Meteorological effects in the ionosphere. Leningrad: Gidrometeoizdat [in Russian].
40. Danilov A. D., Morozova L. D. (1985). Ionospheric storms in the F2 region. Morphology and physics (review). Geomagnetism and Aeronomy, 25 (5), 705—721 [in Russian].
41. Domnin I. F., Kotov D. V., Lyashenko M. V., Chernogor L. F. (2011). Investigation of physical processes in geospace over the Ukraine using incoherent scatter radar. Long-term future of space studies in the Ukraine Kyiv: Akademperiodyka, 62—74 [in Russian].
42. Druzhynin I. P., Khamyanova N. R. (1969). Solar Activity and Abrupt Changes in the Course of Natural Processes on Earth. Moscow: Nauka [in Russian].
43. Dubrov A. P. (1974). Geomagnetic Field and Life. Leningrad: Gidrometeoizdat [in Russian].
44. Yermolaev Yu. I., Zelenyi L. M., Zastenker G. N., Petrukovich A. A., Yermolaev M. Yu., Nikolaeva N. S., Panasyuk M. I., Kuznetsov S. N., Myagkova I. N., Murav’eva E. A., Yushkov B. Yu., Veselovsky I. S., Dmitriev A. V., Zhukov A. N., Ya-kovchouk O. S., Kuznetsov V. D., Chertok I. M., Ishkov V. N., Belov A. V., Eroshenko E. A., Yanke V. G., Gaidash S. P., Kanonidi Kh. D., Kuzin S. V., Zhitnik I. A., Ignat’ev A. P., Slemzin V. A., Sukhodrev N. K., Shestov S. A., Eselevich M. V., Eselevich V. G., Rudenko G. V., Dvornikov V. M., Sdobnov V. E., Kravtsova M. V., Bogod V. M., Kotel’nikov V. S., Pershakov L. A., Beloglazov M. I., Vlasov V. I., Chashei I. V., Kleimenova N. G., Kozyreva O. V., Kozlov V. I., Parkhomov V. A., Kugaenko Yu. A., Khisamov R. Z., Yanchukovskii V. L., Kudela K. (2005). A year later: Solar, heliospheric, and magnetospheric disturbances in November 2004. Geomagnetism and Aeronomy, 45 (6), 681—719.
45. Sagdeev R. Z., Usikov D. A., Zaslavsky G. M. (1988). Introduction to the Nonlinear Physics. New York, Harwood.
46. Kishchuk V. P., Marchenko S. G., Sokolov S. N. (1993). Effects of Large-Scale Precipitation of Relativistic Magnetospheric Electrons during and after the Geomagnetic Storm of November 27—28, 1990, according to the VLF Propagation Data. Geomagnetism and Aeronomy, 33 (4), 93—100 [in Russian].
47. Kleimenova N. G., Kozyreva O. V., Rozhnoy A. A., Solov’eva M. S. (2004). Variations in the VLF signal parameters on the Australia-Kamchatka radio path during magnetic storms. Geomagnetism and Aeronomy, 44 (3), 354—361.
48. Klimontovich Yu. L. (1996). Relative ordering criteria in open systems. Physics-Uspekhi, 39 (11), 1169—1179
https://doi.org/10.1070/PU1996v039n11ABEH000181
49. Kozyreva O. V., Kleimenova N. G., Kornilova T. A., Kauriste K., Manninen J., Ranta A. (2006). Unusual spatial-temporal dynamics of geomagnetic disturbances during the main phase of the extremely strong magnetic storm of November 7—8, 2004. Geomagnetism and Aeronomy, 46 (5), 580—592.
https://doi.org/10.1134/S0016793206050057
50. Kozyreva O. V., Kleimenova N. G., Schott J.-J. (2004). Geomagnetic pulsations at the initial phase of a magnetic storm. Geomagnetism and Aeronomy, 44 (1), 33—41.
51. Space Project “Ionosat-Micro” (2013). Kyiv: Academperiodika [in Russian].
52. Kremenetskiy I. O., Cheremnykh O. K. (2009). Space weather: mechanisms and manifestations. Kyiv: Naukova dumka [in Ukrainian].
53. Kurkin V. I., Pirog O. M., Polekh N. M., Tashchilin A. V., Shpynyov B. G., Kruchinina M. A. (2002). Complex Studies of Ionospheric Effects of Geomagnetic Storms in Northeastern Russia. Proceedings of XX All-Russian Conference on Radio Propagation (Nizhnii Novgorod, July 2—4, 2002). Nizhnii Novgorod, 2002, 62—63 [in Russian].
54. Lazorenko O. V., Chernogor L. F. (2009). Ultra-wideband signals and processes: Monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].
55. Liperovskiy V. A., Pohotelov O. A., Shalimov S. L. (1992). Ionosphere precursors of the earthquakes. Мoscow: Nauka [in Russian].
56. Masamura S. (1971). Effect of Solar Activity on Earth’s Atmosphere and Biosphere. Moscow: Nauka [in Russian].
57. Mizun Yu. G. (1997). Space and Health. Moscow: VECHE, AST [in Russian].
58. Mizun Yu. G. (1986). Space and Health. Moscow: Nauka [in Russian].
59. Miroshnichenko L. I. (2011). The Sun — Earth Problem: Modern Concepts and Physical Mechanisms. Space Science and Technology, 17 (1), 17—22 [in Russian].
https://doi.org/10.15407/knit2011.01.017
60. Miroshnichenko L. I. (1981). Solar Activity and the Earth. Moscow: Nauka [in Russian]
61. Miroshnichenko L. I. (2011). Physics of the Sun and solar-terrestrial relations. Moscow: Universitetskaya Kniga Publ. [in Russian].
62. Moiseeva N. I., Sysuev V. M. (1981). The Temporal Medium and Biological Rhythms. Leningrad: Nauka [in Russian].
63. Monin A. S., Shishkov Yu. A. (2000). Climate as a problem of physics. Phys. Usp., 43 (4), 381—406.
https://doi.org/10.1070/PU2000v043n04ABEH000678
64. Musatenko S. I. (1980). Near-Earth Space Radiation as a Result of Solar Flares Influence on Earth magnetosphere and ionosphere. Geomagnetism and Aeronomy, 20 (5), 884—888 [in Russian].
65. Ostapenko A. A., Maltsev Yu. P. (2005). Relation of the Electromagnetic Energy Flux into the High-Latitude Ionosphere to Solar Wind Parameters. Geomagnetism and Aeronomy. 45 (2), 164—169.
66. Panasenko S. V., Chernogor L. F. (2007). Event of the November 7—10, 2004, magnetic storm in the lower ionosphere. Geomagnetism and Aeronomy, 47 (5), 608—620.
https://doi.org/10.1134/S0016793207050106
67. Panasenko S. V., Chernogor L. F. (2005). Results of Radar Studies of Wave Disturbances in the Lower Ionosphere. Usp. Sovrem. Radioelektron, 7, 38—56 [in Russian].
68. Polekh N. M., Pirog O. M., Voeikov S. V., Tatarinov P. V., Stepanov A. E., Bychkov V. V., Dumbrava Z. F. (2006). Ionospheric disturbances in the east-Asian region during the geomagnetic period in November 2004. Geomagnetism and Aeronomy, 46 (5), 593—602.
https://doi.org/10.1134/S0016793206050069
69. Potapov A. A., Chernogor L. F. (2010). Physical processes in nonlinear system Space — Earth: the channels of effect at biosphere (human). Nelinejnyj mir, 8 (6), 347—360 [in Russian].
70. Heliobiology Problems (1977). Novosibirsk: Novosibirsk State. med. University [in Russian].
71. Pudovkin, M. I., Raspopov O. M. (1992). Mechanism of impact of solar activity on the lower atmosphere state and meteoparameters (review). Geomagnetism and Aeronomy, 32 (5), 1—22 [in Russian].
72. Pulinets S. A., Davidenko D. V., Ouzounov D. P., Karelin A. V. (2015). Physical bases of the generation of short-term earth-quake precursors: A complex model of ionization-induced geophysical processes in the lithosphere—atmosphere—ionosphere—magnetosphere system. Geomagnetism and Aeronomy, 55 (4), 521—538.
https://doi.org/10.1134/S0016793215040131
73. Rozhnoy A. A., Kleimenova N. G., Kozyreva O. V., Solovieva M. S. (2005). Influence of the solar wind and IMF irregularities on the parameters of LF (40 kHz) signals on the midlatitude path. Geomagnetism and Aeronomy, 45 (4), 431—437.
74. Sidyakin V. G., Temur’yants N. A., Makeyev V. B., Vladimirskii B. M. (1985). Cosmic Ecology. Kiev: Naukova dumka [in Russian].
75. Sokolov S. N. (2011). Magnetic storms and their effects in the lower ionosphere: Differences in storms of various types. Geomagnetism and Aeronomy, 51 (6), 741—752.
https://doi.org/10.1134/S0016793211050124
76. King J. W., Newman W. S. (eds.) (1966). Solar-Terrestrial Physics. New York: Academic Press.
77. Mc Cormac B. M., Seliga T. A. (eds.) (1979). Solar terrestrial influences on weather and Climate. Dordrecht: Reidel.
https://doi.org/10.1007/978-94-009-9428-7
78. Taran V. I. (2001). A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetism and Aeronomy, 41 (5), 632—639.
79. Uryadov V. P., Kurkin V. I., Vertogradov G. G., Vertogradov V. G., Ponyatov A. A., Ponomarchuk S. N. (2004). Features of propagation of HF signals on mid-latitude paths under conditions of geomagnetic disturbances. Radiophysics and Quantum Electronics, 47 (12), 933—946.
https://doi.org/10.1007/s11141-005-0035-4
80. Sunyaev R. A (Ed.) (1986). Physics of Space. Second edition, corrected and enlarged. Moscow: Soviet Encyclopedia [in Russian].
81. Hasnulin V. I. (1992). Cosmic secrets of your well-being. Novosibirsk: Nauka [in Russian].
82. Chernogor L. F. (2004). The ammunition explosions on military bases as a source of ecological catastrophe in Ukraine. Ekologiya i resursy, 10, 55—67 [in Russian].
83. Chernogor L. F. (2008). The explosions on gas pipeline and gas reservoir accidents are ecologic catastrophe sources in Ukraine. Ekologiya i resursy, 3, 56—72 [in Russian].
84. Chernogor L. F. (2017). Action of variations in space and tropospheric weather on the biosphere: Systems approach. A. L. Chizhevsky. Contribution to science and culture. I International Scientific and Practical Conference dedicated to the preservation of the creative heritage and the development of A. L. Chizhevsky’s ideas. Materials. Kaluga: Publ. house AKF “Politop”, 101—103 [in Russian].
85. Chernogor L. F., Garmash K. P. (2018). Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagnetism and Aeronomy, 58 (5), 673—685.
https://doi.org/10.1134/S0016793218050031
86. Chernogor L. F., Garmash K. P., Podnos V. A., Tyrnov O. F. (2013). The V. N. Karazin Kharkiv National University Radio physical Observatory — the tool for ionosphere monitoring in space experiments.eds. Space Project “Ionosat-Micro” (Eds S. A. Zasukha, O. P. Fedorov). Kyiv: Akademperiodika Publ., 160—182 [in Russian].
87. Chernogor L. F. (2002). Geo-cosmosphere — The open nonlinear dynamic system. Radiofizika i electronika, 2 (570), 175—180 [in Russian].
88. Chernogor L. F. (2004). Geophysical Effects and Geoecological Consequences of Multiple Chemical Explosions at Ammunition Dumps in Artemovsk. Geophys. J., 26 (4), 31—44 [in Russian].
89. Chernogor L. F. (2004). Geophysical Effects and Ecological Consequences of the Fire at the Military Base Near Melitopol City. Geophys. J., 26 (6), 61—73 [in Russian].
90. Chernogor L. F. (2008). Geoecologic influence of the ammunition explosion.Geoecology. Engineering geology. Hydroecology. Geocriology, 4, 359—369 [in Russian].
91. Chernogor L. F., Domnin I. F. (2014). Physics of geospace storms. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].
92. Chernogor L. F. (2003). The Earth — atmosphere — geospace environment system as an opened dynamic nonlinear one.Space Science and Technology, 9 (5/6), 96—105 [in Russian].
https://doi.org/10.15407/knit2003.05.096
93. Chernogor L. F. (2006). Earth—atmosphere—ionosphere—magnetosphere as an open dynamic nonlinear physical system (Part 1). Nelinejnyj mir, 4 (12), 655—697 [in Russian].
94. Chernogor L. F. (2007). Earth—atmosphere—ionosphere—magnetosphere as an open dynamic nonlinear physical system (Part 2). Nelinejnyj mir, 5 (4), 225—246 [in Russian].
95. Chernogor L. F. (2010). Channels of the impact of variations of cosmic and atmospheric factors on the biosphere and human being. J. Physiology, 56 (3), 25—40 [in Russian].
https://doi.org/10.15407/fz56.03.025
96. Chernogor L. F. (2017). Channels for the action of space and tropospheric weather on human being.A. L. Chizhevsky. Contribution to science and culture. I International Scientific and Practical Conference dedicated to the preservation of the creative heritage and the development of A. L. Chizhevsky’s ideas. Materials. Kaluga: Publ. house AKF “Politop”, 104—107 [in Russian].
97. Chernogor L. F. (2004). Non-linear Radio Physics. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].
98. Chernogor L. F. (2008). On the Nonlinearity in Nature and Science: Monograph. Kharkiv: Kharkiv V. N. Karazin National University Publ. [in Russian].
99. Chernogor L. F. (2009). Radiophysical and Geomagnetic Effects of Rocket Engine Burn. Kharkiv: Kharkiv V. N. Karazin National University Publ. [in Russian].
100. Chernogor L. F. (2008). Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results. Geomagnetism and Aeronomy, 48 (5), 652—673.
https://doi.org/10.1134/S0016793208050101
101. Chernogor L. F. (2011). The Sun — interplanetary space — magnetosphere — ionosphere — atmosphere — Earth as an open non-equilibrium nonlinear physical system, 1.J. Problem of the Evolution of Open Systems, 13 (1),22—66 [in Russian].
102. Chernogor L. F. (2013). The Sun—interplanetary medium—magnetosphere—ionosphere—atmosphere—Earth as an open non-equilibrium nonlinear physical system, 2. J. Problem of the Evolution of Open Systems, 15 (1), 43—87 [in Russian].
103. Chernogor L. F. (2006). The tropical cyclone as an element of the Earth — atmosphere — ionosphere — magnetosphere system. Space Science and Technology, 12 (2/3), 16—26 [in Russian].
https://doi.org/10.15407/knit2006.02.016
104. Chernogor L. F. (2011). Physics of the geospace and space weather: Systems approach, achievements, research strategy.Long-term future of space studies in the Ukraine. Kyiv: Akademperiodyka, 55—61 [in Russian].
105. Chernogor, L. F. (2003). Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Physics and Radio Astronomy, 8 (1), 59—106 [in Russian].
106. Chernogor, L. F., Domnin, I. F. (2014). Physics of Geospace Storms: monograph. Kharkiv: Kharkiv V. N. Karazin National University Publ. [in Russian].
107. Chernogor L. F. (2007). Physics and ecology of the Earth — atmosphere — ionosphere — magnetosphere system. The sciences about the Earth and space for society. The Proceedings of the first scientific Conference, Kyiv, June 25—27, 2007 (NANU-NTsADZ IGN, GAO, Kyiv, 2007) 86—93 [in Russian].
https://doi.org/10.15407/knit2007.01s.086
108. Chernogor L. F. (2003). Physical processes in the near-Earth environment associated with March — April 2003 Iraq war. Space Science and Technology, 9 (2/3), 13—33 [in Russian].
https://doi.org/10.15407/knit2003.02.013
109. Chernogor L. F. (2006). Ecological consequences of multiple chemical explosions in anthropogenic catastrophe. Geoecol-ogy. Engineering geology. Hydrogeology. Geocryology, 6, 522—535 [in Russian].
110. Chernogor L. F. (1999). Energetics of the processes occurring on the Earth, in the atmosphere and near-Earth space in connection with the project “Early warning”. Space Science and Technology, 5 (1), 38—47 [in Russian].
https://doi.org/10.15407/knit1999.01.038
111. Chibisov S. M. (2006). Biorhythms and heliophysical Factors. Fundamental Research. 9, 34—41 [in Russian].
112. Chizhevsky A. L. (1976). The Terrestrial Echo of Solar Storms. 2nd ed. Moscow: Mysl [in Russian].
113. Shuster H. G. (1988). Deterministic Chaos: An Introduction. Weinheim, Federal Republic of Germany / New York, VCH Verlagsgesellschaft mbH/VCH Publishers.
114. Yampolski Y. M., Zalizovski A. V., Zanimonskiy E. M., Lizunov G. V., Lisachenko V. N. (2008). Coupling of the weather system in the atmosphere and in space. Space Science and Technology, 14 (5), 6—36 [in Russian].
https://doi.org/10.15407/knit2008.05.006
115. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. M., Lizunov G. V., Groves K., Moldwin M. (2004). Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Physics and Radio Astronomy, 9 (2), 130—151 [in Russian].
116. Albertson V. D., Thorson J. M. (1974). Power system disturbances during a K 8 geomagnetic storm: August 4, 1972, IEEE Transactions on Power Apparatus and Systems, PAS 93, 1025—1030.
https://doi.org/10.1109/TPAS.1974.294046
117. Bailey G. J., Moffett R. J., Murphy J. A. (1979). Calculated daily variations of O+ and H+ at mid-latitudes. II. Sunspot maximum results. J. Atmos. Terr. Phys., 41, 471—482.
https://doi.org/10.1016/0021-9169(79)90038-2
118. Balan, N., Rao P. B. (1990). Dependence of ionospheric response on the local time of sudden commencement and intensity of storms. J. Atmos. Terr. Phys. 52, 269—275.
https://doi.org/10.1016/0021-9169(90)90094-4
119. Banks P. M. (1966). Charged particle temperatures and electron thermal conductivity in the upper atmosphere. Ann. Geophys., 22, 577—584.
120. Benestad R. E. (2002). Solar activity and earth’s climate. Springer-Praxis.
121. Bilitza D. (1997). International Reference Ionosphere-Status. Adv. Space Res. 20 (9), 1751-1754.
https://doi.org/10.1016/S0273-1177(97)00584-X
122. Bilitza D. (1997). Preface. Adv. Space Res. 20 (9), 1649.
https://doi.org/10.1016/S0273-1177(97)00567-X
123. Blanc M., Richmond A. D. (1980). The ionospheric disturbance dynamo. J. Geophys. Res., 85, 1669-1686.
https://doi.org/10.1029/JA085iA04p01669
124. Bothmer V., Daglis I. (2006). Space Weather: Physics and Effects. New York: Springer-Verlag. ISBN 3-642-06289-X.
https://doi.org/10.1007/978-3-540-34578-7
125. Bradley P. A., Cander L. R., Kutiev I., Hanbaba R. (1997). PRIME (COST 238) Studies of Ionospheric Storm Effects. Adv. Space Res., 20 (9), 1669-1678.
https://doi.org/10.1016/S0273-1177(97)00571-1
126. Breus T. K., Ozheredov V. A., Syutkina E. V., Rogoza A. N. (2008). Some aspects of the biological effects of Space Weather. J. Atmos. and Sol-Terr Phys., 70 (2-4), 436-441.
https://doi.org/10.1016/j.jastp.2007.08.025
127. Buonsanto M. J. (1995). A case study of the ionospheric storm dusk effects. J. Geophys. Res., 100 (A12), 23,857-23,869.
https://doi.org/10.1029/95JA02697
128. Buonsanto M. J., Codrescu M., Emery B. A., Fesen C. G., Fuller-Rowell T. J., Melendez-Alvira D. J., Sipler D. P. (1997). Recent Results of the CEDAR Storm Study. Adv. Space Res., 20 (9), 1655-1664.
https://doi.org/10.1016/S0273-1177(97)00569-3
129. Buonsanto, M. J., Foster J. C., Sipler D. P. (1992). Observations From Millstone Hill During the Geomagnetic Disturbances of March and April 1990. J. Geophys. Res., 97, 1225-1243.
https://doi.org/10.1029/91JA02428
130. Buonsanto M. J. (1999). Ionospheric Storms-a Review. Space Sci. Reviews., 88, 563-601.
https://doi.org/10.1023/A:1005107532631
131. Buonsanto M. J.; González S. A.; Pi, X.; Ruohoniemi J. M.; Sulzer M. P.; Swartz W. E.; Thayer J. P.; Yuan D. N. (1999). Radar Chain Study of the May, 1995 Storm. J. Atmos. Solar-Terr. Phys., 61, 233-248.
https://doi.org/10.1016/S1364-6826(98)00134-5
132. Buonsanto M. J. (1995). Millstone Hill Incoherent Scatter F Region Observations During the Disturbances of June 1991. J. Geophys. Res., 100 (A4), 5743-5755.
https://doi.org/10.1029/94JA03316
133. Burns A. G., Killeen T. L., Deng W., Carignan G. R., Roble R. G. (1995). Geomagnetic storm effects in the low- to middlelatitude upper thermosphere. J. Geophys. Res., 100, 14673-14691.
https://doi.org/10.1029/94JA03232
134. Burns A. G., Killeen T. L., Roble R. G. (1991). A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm. J. Geophys. Res., 96 (A8), 14,153-14,167.
https://doi.org/10.1029/91JA00678
135. Carlowicz M. J., Lopez R. E. (2002). Storms from the Sun. Washington DC, Joseph Henry Press. ISBN 0-309-07642-0.
136. Chernogor L. F., Blaunstein N. (2013). Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the- Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.
137. Chernogor L. F., Grigorenko Ye. I., Lysenko V. N., Taran V. I. (2007). Dynamic processes in the ionosphere during magnetic storms from the Kharkov incoherent scatter radar observations. Int. J. Geomagn. Aeron., 7, GI3001.
https://doi.org/10.1029/2005GI000125.
138. Chernogor L. F., Rozumenko V. Т. (2008). Earth - Atmosphere - Geospace as an Open Nonlinear Dynamical System. Radio Phys. and Radio Astron., 13 (2), 120-137.
139. Chernogor L. F. (2011). The Earth - atmosphere - geospace system: main properties and processes.Int. J. Rem. Sens., 32 (11), 3199-3218.
https://doi.org/10.1080/01431161.2010.541510
140. Danilov A. D., Lastovička J. (2001). Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron., 2 (3), 209-224.
141. Encyclopedia of Nonlinear Science (2006). (Ed. Alwyn Scott). New York and London: Routledge.
142. Essex E. A., Mendillo M., Schödel J. P., Klobuchar J. A., da Rosa A. V., Yeh K. C. Fritz R. B., Hibberd F. H., Kersley L., Koster J. R., Matsoukas D. A., Nakata Y., Roelofs T. H. (1981). A global response of the total electron content of the ionosphere to the magnetic storms of 17 December and 18 June 1972. J. Atmos. Terr. Phys., 43, 293-306.
https://doi.org/10.1016/0021-9169(81)90091-X
143. Field P. R., Rishbeth H. (1997). The response of ionospheric F2-layer to geomagnetic activity: an analysis of wordwide data. J. Atmos. Sol-Terr. Phys., 59 (2), 163-180.
https://doi.org/10.1016/S1364-6826(96)00085-5
144. Foster J. C., Cummer S., Inan U. S. (1998). Midlatitude particle and electric field effects at the onset of the November 1993 Geomagnetic Storm. J. Geophys. Res., 103, 26,359-26,366.
https://doi.org/10.1029/98JA00018
145. Foster J. C., Rich F. J. (1998). Prompt midlatitude electric field effects during severe geomagnetic storms. J. Geophys. Res., 103, 26,367-26,372.
https://doi.org/10.1029/97JA03057
146. Foster J. C. (1993). Storm-time plasma transport at middle and high latitudes. J. Geophys. Res., 98, 1675-1689.
https://doi.org/10.1029/92JA02032
147. Freeman J. W. (2001). Storms in Space. London, New York: Cambridge University Press.
148. Fuller-Rowell T. J., Codrescu M. V., Moffett R. J., Quegan S. (1994). Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res., 99, 3893-3914.
https://doi.org/10.1029/93JA02015
149. Fuller-Rowell T. J., Codrescu M. V., Roble R. G., Richmond A. D. (1998). How does the thermosphere and ionosphere react to a geomagnetic storm? Magnetic storms. (Eds Tsurutani B. T., Gonzalez W. D., Kamide Y., Arballo J. K.) Washing- ton, D.C., American Geophysical Union, Geophysical monograph series, 98, 203-225
https://doi.org/10.1029/GM098p0203
150. Gonzales C. A., Kelley M. C., Behnke R. A., Vickrey J. F., Wand R., Holt J. (1983). On the Latitudinal Variations of the Ionospheric Electric Field During Magnetospheric Disturbances. J. Geophys. Res., 88 (A11), 9135-9144.
https://doi.org/10.1029/JA088iA11p09135
151. Gonzales W. D., Jozelyn J. A., Kamide Y., Kroehl H. W. (1994). What is a geomagnetic storm? J. Geophys. Res., 99 (A4), 5771-5792.
https://doi.org/10.1029/93JA02867
152. Goodman J. M. (2005). Space Weather and Telecommunications. New York: Springer.
153. Horsthemke W., Lefever R. (2006). Noise-induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Berlin-Tokyo: Springer-Verlag.
154. International Solar Terrestrial physics. URL: https://www-istp.gsfc.nasa.gov/istp/ (Last accessed 12.09.2018).
155. Jacovchouk O. S., Mursula K., Hollappa L., Veselovsky I. S., Karinen A. (2012). Average properties of geomagnetic storms in 1932-2009. J. Geophys. Res., 117, A03201.
https://doi.org/10.1029/2011JA017093
156. Jones K. L., Rishbeth H. (1971). The origin of storm increases of mid-latitude F-layer electron concentration. J. Atmos. Terr. Phys., 33, 391-401.
https://doi.org/10.1016/0021-9169(71)90144-9
157. Kallenrode May-Britt. Space Physics (2004): An introduction to plasmas and particles in the heliosphere and magnetospheres. New York: Springer.
158. Kivelson M. G., Russell Ch. T. (1995). Introduction to Space Physics. Cambridge: Cambridge Atmospheric & Space Science Series.
https://doi.org/10.1017/9781139878296
159. Kleimenova N. G., Kozyreva O. V., Breus T. K., Rapoport S. I. (2007). Pc-1 geomagnetic pulsations as a potential hazard of myocardial infarction. J. Atmos. and Sol-Terr Phys., 69, 1759-1764.
https://doi.org/10.1016/j.jastp.2006.10.018
160. Knipp D. J., Crooker N., Engebretson M., Li X., McAllister A. H., Mukai T., Kokubun S., Reeves G. D., Obara T., Weath-erwax A. N., Emery B. A. (1998). An Overview of the Early November 1993 Geomagnetic Storm. J. Geophys. Res., 103, 26,197-26,220.
https://doi.org/10.1029/98JA00762
161. Knipp D. J., Fraser B. J., Shea M. A., Smart D. F. (2018). On the Little-Known Consequences of the 4 August 1972 Ultraast Coronal Mass Ejecta: Facts, Commentary, and Call to Action. Space Weather, 16, No 11, 1635-1643.
https://doi.org/10.1029/2018SW002024
162. Knipp D. J., Ramsay A. C., Beard E. D., Boright A. L., Cade W. B., Hewins I. M., McFadden R. H., Denig W. F., Kilcommons L. M., Shea M. A., Smart D. F. (2016). The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses. Space Weather, 14, 614- 633.
https://doi.org/10.1002/2016SW001423
163. Lakhina G. S., Alex S., Tsurutani B. T., Gonzalez W. D. (2013). Supermagnetic storms: Hazard to society. (Eds A. S. Sharma, A. Bunde, V. P. Dimri, D. N. Baker). Extreme events and natural hazards: The complexity perspective. Washington, DC: American Geophysical Union, 267- 278.
https://doi.org/10.1029/2011GM001073
164. Lathuillère C., Menvielle M., Lilensten J., Amari T., Radicella S. M. (2002). From the Sun's atmosphere to the Earth's atmosphere: an overview of scientific models available for space weather developments. Annales Geophysicae, 20 (7), 1081-1104.
https://doi.org/10.5194/angeo-20-1081-2002
165. Lilensten J., Bornarel J. (2005). Space Weather, Environment and Societies. Berlin/New York: Springer. ISBN 978-1-4020-4331-4.
166. Lin C. H., Richmond A. D., Heelis R. A., Bailey G. J., Lu G., Liu J. Y., Yeh H. C., Su S.-Y. (2005). Theoretical study of the low and mid latitude ionospheric electron density enhancement during the October 2003 storm: Relative importance of the neutral wind and the electric field. J. Geophys. Res., 110, A12312.
https://doi.org/10.1029/2005JA011304
167. Loewe C. A., Prolss G. W. (1997). Classification and mean behavior of magnetic storms. J. Geophys. Res., 102, 14209-14213.
https://doi.org/10.1029/96JA04020
168. Lu G., Goncharenko L. P., Richmond A. D., Roble R. G., Aponte N. (2008). A dayside ionospheric positive storm phase driven by neutral winds. J. Geophys. Res., 113, A08304.
https://doi.org/10.1029/2007JA012895
169. Mannucci, A. J.; Tsurutani, B. T.; Iijima, B. A.; Komjathy, A.; Saito, A.; Gonzalez, W. D.; Guarnieri, F. L.; Kozyra, J. U.; Skoug, R. (2005). Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 "Hal-loween storms". Geophys. Res. Lett., 32, L12S02.
https://doi.org/10.1029/2004GL021467
170. Matsushita S. (1959). A study of the morphology of ionospheric storms. J. Geophys. Res., 64, 305-321.
https://doi.org/10.1029/JZ064i003p00305
171. Matuura N. (1972). Theoretical models of ionospheric storms. Space Sci. Rev., 13, 124-189.
https://doi.org/10.1007/BF00198166
172. Mayr H. G., Volland H. (1983). Magnetic storm characteristics of the thermosphere. J. Geophys. Res., 78, 2251-2264.
https://doi.org/10.1029/JA078i013p02251
173. Mendillo M., Narvaez C. (2009). Ionospheric storms at geophysically equivalent sites. Part 1: Local time patterns for subauroral ionospheres. Ann. Geophys., 27, 1679-1694.
https://doi.org/10.5194/angeo-27-1679-2009
174. Mendillo M., Narvaez C. (2010). Ionospheric storms at geophysically equivalent sites. Part 2: Local time patterns for subauroral ionospheres. Ann. Geophys., 28, 1449-1462.
https://doi.org/10.5194/angeo-28-1449-2010
175. Mendillo M. (2006). Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys.,44, RG4001.
https://doi.org/10.1029/2005RG000193
176. Mikhailov A. V., Förster M. (1999). Some F2-layer Effects During the January 06-11, 1997 CEDAR Storm Period as Observed with the Millstone Hill Incoherent Scatter Facility. J. Atmos. Solar-Terr. Phys., 61, 249-261.
https://doi.org/10.1016/S1364-6826(98)00129-1
177. Mikhailov A. V., Foster J. C. (1997). Daytime Thermosphere Above Millstone Hill During Severe Geomagnetic Storms. J. Geophys. Res. 102, 17,275-17,282.
https://doi.org/10.1029/97JA00879
178. Mishin E., Foster J. C., Potekhin A. P. (2000). Ionospheric perturbations caused by quasi-periodic magnetic disturbances during the September 25, 1998 storm. EOS Trans. AGU, 81 (48), Fall Meeting. F 947. San Francisco. USA.
179. Mishin E., Foster J. C., Rich F. J., Taran V. I. (2001). Prompt ionospheric response to short period solar wind variations during the magnetic cloud event Sep 25, 1998. EOS Trans. AGU, 81 (20), Spring Meeting. S 291. San Francisco. USA. May 15.
180. Moldwin M. (2008). An introduction to space weather. Cambridge: Cambridge Univ. Press.
https://doi.org/10.1017/CBO9780511801365
181. National Space Weather Program. URL: http://www.spaceweathercenter.org/swop/NSWP/1.html (Last accessed 12.09.2018).
182. Ngwira C. M., McKinnell L.-A., Cilliers P. J. (2012). Ionospheric observations during the geomagnetic storm events on 24-27 July 2004: Long-duration positive storm effects. J. Geophys. Res., 117 (A1).
https://doi.org/10.1029/2011JA016990
183. Obayashi T. (1964). Morphology of Storms in the Ionosphere. Rev. Geophys., 1, 335-366.
https://doi.org/10.5636/jgg.16.1
184. Pavlov A. V., Buonsanto M. J., Schlesier A. C., Richards P. G. (1999). Comparison of Models and Data at Millstone Hill During the 5-11 June 1991 Storm. J. Atmos. Solar-Terr. Phys., 61, 263-279.
https://doi.org/10.1016/S1364-6826(98)00135-7
185. Pavlov A. V., Buonsanto M. J (1996). Using Steady-state Vibrational Temperatures to Model Effects of N2* on Calculations of Electron Densities. J. Geophys. Res., 101, 26,941-26,945.
https://doi.org/10.1029/96JA02734
186. Pavlov A. V. (1998). The Role of Vibrationally Excited Oxygen and Nitrogen in the Ionosphere during the Undisturbed and Geomagnetic Storm Period of 6-12 April 1990. Ann. Geophys., 16, 589-601.
https://doi.org/10.1007/s00585-998-0589-5
187. Physics of the Space Environment (2006). (Eds Gombosi T. I., Houghton J. T., Dessler A. J.). Cambridge: Cambridge Uni- versity Press. ISBN 978-0-521-60768-1.
188. Pirog O. M., Polekh N. M., Voeykov S. V., Zherebtsov G. A., Tatarinov P. V. (2007). Ionospheric disturbances in the East- Asian region during geomagnetic storm in November, 2004. Adv. in Space Res., 39, 1335-1341.
https://doi.org/10.1016/j.asr.2007.01.017
189. Prölss G. W. (1995). Ionospheric F region storms. Handbook of Atmospheric Electrodynamics (Ed. H. Volland). Boca Raton, Fla: CRC Press, 195-248.
190. Prölss G. W., Jung M. J. (1978). Traveling atmospheric disturbances as a possible explanation for daytime positive storm effects of moderate duration at middle latitudes. J. Atmos. Terr. Phys., 40, 1351-1354.
https://doi.org/10.1016/0021-9169(78)90088-0
191. Prölss G. W. (1998). Magnetic storm associated perturbations of the upper atmosphere. (Eds Tsurutani B. T., Gonzalez W. D., Kamide Y., Arballo J. K.). Magnetic storms. Washington, D.C. American Geophysical Union, Geophysical monograph series, 98, 249-290.
192. Prölss G. W. (1993). On explaining the local time variation of ionospheric storm effects. Ann. Geophys., 11, 1-9.
193. Pulinets S., Boyarchuk K. (2004). Ionospheric Precursors of Earthquakes. Berlin: Springer-Verlag.
194. Rastogi R. G. (1977). Geomagnetic storms and electric fields in the equatorial ionosphere. Nature. 268, 422-424.
https://doi.org/10.1038/268422a0
195. Reddy C. A., Nishida A. (1992). Magnetospheric Substorms and Nighttime Height Changes of the F2 Region at Middle and Low Latitudes. J. Geophys. Res., 97, No A3, 3039-3061.
https://doi.org/10.1029/91JA01512
196. Rees D. (1995). Observation and modeling of ionospheric and thermospheric disturbances during major geomagnetic storms: a review. J. Atmos. Terr. Phys., 57, No. 12, 1433-1457.
https://doi.org/10.1016/0021-9169(94)00142-B
197. Reeves G. D., McAdams K. L., Friedel R. H. W., O'Brien T. P. (2003). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett., 30 (10), 36-1-36-4.
https://doi.org/10.1029/2002GL016513
198. Richards P. G., Torr D. G., Buonsanto M. J., Sipler D. P. (1994). Ionospheric Effects of the March 1990 Magnetic Storm: Comparison of Theory and Measurement. J. Geophys. Res., 99, No A12, 23,359−23,365.
https://doi.org/10.1029/94JA02343
199. Richmond A. D., Matsushita S. (1975) Thermospheric response to a magnetic substorm. J. Geophys. Res.,80, 2839-2850.
https://doi.org/10.1029/JA080i019p02839
200. Robinson R. M. (2006). Book Review: Space Weather, Environment and Societies - Space Weather, 4, S05004.
https://doi.org/10.1029/2006SW000243
201. Roble R. G., Dickinson R. E., Ridley E. C. (1982). Global circulation and temperature structures of thermosphere with high-latitude convection. J. Geophys. Res., 87, 1599-1614.
https://doi.org/10.1029/JA087iA03p01599
202. Schunk R. W., Sojka J. J. (1996). Ionosphere-Thermosphere Space Weather Issues. J. Atmos. Terr. Phys., 58, 1527-1574.
https://doi.org/10.1016/0021-9169(96)00029-3
203. Schwenn R. (2006). Space Weather, Living Reviews in Solar Physics 3. 2. online article.
https://doi.org/10.12942/lrsp-2006-2
204. Schunk R. W., Nagy A. F. (1978). Electron temperature in the F region of the ionosphere: theory and observations. Rev. Geophys. Space Phys., 16, No 3, 355-399.
https://doi.org/10.1029/RG016i003p00355
205. Space Storms and Space Weather Hazards (2001). (Ed. Daglis I. A.). New York: Springer-Verlag .
206. Space Weather (Geophysical Monograph) (2001). (Eds Song P., Singer H., Siscoe G.). Union, Washington, D.C.
207. Tadokoro H., Tsuchiya F., Miyoshi Y., Misawa H., Morioka A., Evans D. S. (2007). Electron flux enhancement in the inner radiation belt during moderate magnetic storms. Ann. Geophys., 25, No 6, 1359-1364.
https://doi.org/10.5194/angeo-25-1359-2007
208. Tsurutani T., Bruce E., Echer. E, Guarnieri F., Kozyra J. (2008). CAWSES November 7-8, 2004, superstorm: Complex solar and interplanetary features in the post-solar maximum phase. Geophys. Res. Lett., 35 .
https://doi.org/10.1029/2007GL031473
209. Vijaya Lekshmi D., Balan N., Tulasi Ram S., Liu J. Y (2011). Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res., 116 (A11328).
https://doi.org/10.1029/2011JA017042
210. Vijaya Lekshmi D., Balan N., Vaidyan V. K., Alleyne H., Bailey G. J. (2007). Response of the ionosphere to super storms Adv. Space Res., 41, 548-555.
https://doi.org/10.1016/j.asr.2007.08.029
211. Willis D. M., Stevens P. R., Crothers S. R. (1997). Statistics of the largest geomagnetic storms per solar cycle (1844-1993). Ann. Geophysicae, 15, No 6, 719-728.
https://doi.org/10.1007/s00585-997-0719-5
212. Wratt D. S. (1976). Ionization enhancement in the middle latitude D region due to precipitating high energy electrons. J. Atmos. Terr. Phys., 38, No 5, 511-516.
https://doi.org/10.1016/0021-9169(76)90008-8
213. Yakovchouk O. S., Mursula K., Holappa L., Veselovsky I. S., Karinen A. (2012). Average properties of geomagnetic storms in 1932-2009. J. Geophys. Res., 117, No A3.
https://doi.org/10.1029/2011JA017093
214. Yermolaev Yu. I., Zelenyi L. M., Kuznetsov V. D., Chertok I. M., Panasyuk M. I., Myagkova I. N., Zhitnik I. A., Kuzin S. V., Eselevich V. G., Bogod V. M., Arkhangelskaja I. V., Arkhangelsky A. I., Kotov Yu. D. (2008). Magnetic storm of November, 2004: Solar, interplanetary, and magnetospheric disturbances. J. Atmospheric and Solar-Terrestrial Phys., 70, No 2-4, 334-341.
https://doi.org/10.1016/j.jastp.2007.08.020
215. Zalyubovsky I. I., Chernogor L. F., Rozumenko V. T. (2008). The Earth - Atmosphere - Geospace System: Main Proper- ties, Processes and Phenomena. Space Research in Ukraine. 2006-2008. The Report Prepared by the Space Research Institute of NASU-NSAU. Kyiv, 19-29.