Throughput of the optical telescope for observing LEO objects
1Kozhukhov, ОМ 1National Space Facilities Control and Test Center, State Space Agency of Ukraine, 8, Kniaziv Ostrozkykh Str., Kyiv, 01010 Ukraine |
Space Sci. & Technol. 2021, 27 ;(3):28-38 |
https://doi.org/10.15407/knit2021.03.028 |
Язык публикации: Ukrainian |
Аннотация: Observation of Low-Earth-Orbit space objects by optical sensors (telescopes) is a rather complex task that requires equipment with appropriate characteristics. Througput can be considered as one of the main characteristics of optical sensors for observing Low-Earth-Orbit space objects.
An approach to the theoretical estimation of the optical telescope’s throughput when observing Low-Earth Orbit space objects is proposed in the paper. It is based on the representation of the telescope as a queuing system. The queuing system can be of various types depending on the observation methods that are used. The input flow in this queuing system is the flow of Low-Earth Orbit space objects’ passes through the viewing area of the telescope, and the output flow is the flow of observed passes. The average total time spent for observing one Low-Earth Orbit space object is taken as the average service time. Quantitative characteristics of these values can be obtained by simulating the Low-Earth Orbit space objects’ passes through the telescope's viewing area. The throughput of the queuing system was chosen as the main estimated characteristic.
An example of evaluating the characteristics of such a queuing system is given. It is based on the “Sazhen-S” quantum optical station of the Centre for Special Data Reception and Processing and Navigating Field Control of the National Space Facilities Control and Test Center of State Space Agency of Ukraine. Possible ways of increasing the throughput of “Sazhen-S” quantum optical station according to the observation of Low-Earth Orbit space objects are proposed.
|
Ключевые слова: Low-Earth Orbit space objects, optical observations, queuing systems |
References:
1. Venttsel’ Y. S. (1969). Probability theory (4th ed.). М.: Nauka [in Russian].
2. Venttsel’ Y. S. (1988). Operations research: tasks, principles, methodology (2nd ed.). М.: Nauka [in Russian].
3. Prohorov Y. V. (1999). (Ed. in chief). Probability and Mathematical Statistics: Encyclopedia. M.: Big Russian Encyclopedia [in Russian].
4. Kanevs’ky L. B., Kovbasuk S. V. (2014). The Use of Optical Sensors for Monitoring of Outer Space in Ukraine. Zhytomyr State Technological University Herald. Ser. Technical Sci., 1 (68), 44—49 [in Ukrainian].
5. Klimov G. P. (2011). Queuing theory (2nd ed., revised). M.: Moscow University Press [in Russian].
6. Kozhukhov O. M., Rishchenko S. V., Dementiev T. A., Yepishev V. P., Motrunich I. I., Neubauer I. F., et al. (2019). State Iden-tification of CubeSat-Type Satellites by Optical Observations (on the Example of ARKYD 6A Spacecraft). Uzhhorod University Scientific Herald. Ser. Phys., 45, 141—148 [in Russian].
7. Kozyryev Y. S., Kozhukhov O. M., Sybiryakova Y. S. (2017). Method for automatic sheduling for LEO object’s observations at fixed telescope. Space science and technology, 23(4), 71—77 [in Russian].
8. Kozyryev Y. S., Sybiryakova Y. S., Shulga A. V. (2011). TV observations of low Earth orbit objects using frame accumulation with shift. Space science and technology, 17(3), 71—76 [in Russian].
9. Sukhov P. P., Volkov S. K., Karpenko G. F. (2010). The Use of the Wide-Field Lens Optics for Space Surveillance Systems. Space science and technology, 16(3), 55—58 [in Russian].
10. Shulga O. V., Kozyryev Y. S., Sybiryakova Y. S., Khalaley M. I., Chernozub V. M. (2012). The Mobile Telescope Complex of RI MAO for Observation of Near-Earth Space Objects. Space science and technology, 18(4), 52—58 [in Russian].
11. Blake J. A., Chote P., Pollacco D., Veras D, Ash A., Feline W., et al. (2019). Optical imaging of faint geosynchronous debris with the Isaac Newton Telescope. Proceedings from Advanced Maui Optical and Space Surveillance Technologies Confer-ence (AMOS), September 2019. URL: https://amostech.com/TechnicalPapers/2019/Orbital-Debris/Blake.pdf (Last ac-cessed 17.03.2020).
12. Chote P., Blake J. A., Pollacco D. (2019). Precision Optical Light Curves of LEO and GEO Objects. Proceedings from Ad-vanced Maui Optical and Space Surveillance Technologies Conference (AMOS), September 2019. URL: https://amostech.com/TechnicalPapers/2019/Non-Resolved-Object-Characterization/Chote.pdf (Last accessed 17.03.2020).
13. Denneau L., Kubica J., Jedicke R. (2007). The Pan-STARRS Moving Object Pipeline. Astronomical Data Analysis Software and Systems XVI, proceedings of the conference (15—18 October 2006, Tucson, Arizona, USA). Ed. by R. A. Shaw, F. Hill and D. J. Bell. ASP Conf. Ser.,376, 257—260.
14. Grav T., Jedicke R., Denneau L., Chesley S., Holman M. J., Spahr T. B. (2008). The Pan-STARRS Synthetic Solar Sys-tem Model: A tool for testing and efficiency determination of the Moving Object Processing System. URL: https://www.ifa.hawaii.edu/users/jedicke/MOPS/papers/Grav.2008.Pan-STARRSSyntheticSolarSystemModel.pdf (Last accessed 17.03.2020).
15. Jedicke R., Morbidelli A., Spahr T., Petit J.-M., Bottke W. F. (2003). Earth and space-based NEO survey simulations: pros-pects for achieving the Spaceguard Goal. Icarus, 161, 17—33.
https://doi.org/10.1016/S0019-1035(02)00026-X .
16. Kaminski K., Wnuk E., Golebiewska J., Krużyński M., Kankiewicz P., Kamińska M. (2017). High Efficiency Robotic Opti-cal Tracking of Space Debris From PST2 Telescope in Arizona. Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017, published by the ESA Space Debris Office. Ed. T. Flohrer, F. Schmitz (URL: http://space-debris2017.sdo.esoc.esa.int, June 2017). URL: https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/740/SDC7-paper740.pdf (Last accessed 17.03.2020).
17. Kozhukhov О. М., Dementiev T. O., Rischenko S. V., Koshkin N. I., Shakun L. S., Strahova S. L., et al. (2019). Observation of LEO Objects Using Optical Surveillance Facilities: The Geographical Aspect. Artificial Sattelites,54(4), 113—128.
18. Lederer S. M., Stansbery E. G., Cowardin H. M., Hickson P., Pace L. F., Abercromby K. J., et al. (2013). The NASA Meter Class Autonomous Telescope: Ascension Island. Proceedings from Advanced Maui Optical and Space Surveillance Technolo-gies Conference (AMOS), September 2013. URL: https://amostech.com/TechnicalPapers/2013/POSTER/LEDERER.pdf AMOS-2013 (Last accessed 17.03.2020).
19. Shakun L., Korobeynikova E., Koshkin N., Melikyants S., Strakhova S., Terpan S., et al. (2016). The observations of arti-ficial satellites and space debris using KT-50 telescope in the Odessa University. Odessa Astron. Publs, 29, 217—220.
20. Stevenson K. B., Fabrycky D., Jedicke R., Bottke W., Denneau L. (2013). NEOKepler: Discovering Near-Earth Objects Using the Kepler Spacecraft. URL: https://arxiv.org/abs/1309.1096 (Last accessed 17.03.2020).