Method of constructing the primary error matrix of the RT-32 radio telescope in an automated mode

Рубрика: 
1Vlasenko, VP, 1Mamarev, VM, 1Ozhynsky, VV, 2Ulyanov, OM, 2Zakharenko, VV, 3Palamar, MI, 3Chaikovskyi, AV
1National Center of Space Facilities Control and Test, Kyiv, Ukraine
2Institute of Radio Astronomy of the National Academy of Science of Ukraine, Kharkiv, Ukraine
3Ternopil Ivan Pului National Technical University, Ternopil, Ukraine
Space Sci. & Technol. 2021, 27 ;(3):66-75
https://doi.org/10.15407/knit2021.03.066
Язык публикации: Ukrainian
Аннотация: 
2020 was the year of introduction of the Ukrainian new generation radio telescope RT-32 into the experimental operation. The test results of maser hydrogen and hydroxyl lines obtained during the experimental operation confirmed the correctness of the calculations and technological solutions of Ukrainian scientists and manufacturers Consortium. One of the further development directions of RT-32 as a radio astronomical research tool is to increase the accuracy of pointing the radio telescope to radio astronomical sources. One of the further development directions of RT-32 as a radio astronomical research tool is to increase the accuracy of pointing the radio telescope to astronomical radio sources. The latter is to be achieved by automating the processes of guidance error matrices formation and their integration during the observations. The formation of such a matrix presupposes taking into account the structural features of the antenna system and weather condition.
           The paper presents the results of geodetic measurements of the antenna system surface on different elevation angle, construction of the 3D model of the reflector. The method of constructing the error matrix, which at this stage of research provides the necessary simplicity of perception and interpretation of the obtained results by the human operator, is proposed. The results of the developed method verification using reference radio sources are given and the error matrices of elevation and azimuth pointing (dimension 81x81 elements) obtained with the use of said method are presented. The introduction of the results presented in the article into the radio telescope control system allowed increasing the accuracy of RT-32 radio telescope pointing in the C- and K- bands to the value of ~36″. This work partially was supported by Latvian Council of Science project "Joint Latvian-Ukrainian study of peculiar radio galaxy “Perseus A” in radio and optical bands. Nr: lzp-2020/2-0121".
Ключевые слова: antenna system, error matrix, radio sources, radio telescope
References: 
1. Antyufeyev А. V., Korolev А. М., Patoka O. M., Shulga V. M., Ulyanov О. М., Reznichenko O. М., Zakharenko V. V., Prisiazhnii V. I., Poikhalo А. V., Voityuk V. V., Mamarev V. N., Ozhinskyi V. V., Vlasenko V. P., Chmil V. M., Lebed V. I., Palamar M. I., Chaikovskii А. V., Pasternak Yu. V., Strembitskii M. A., Natarov М. P., Steshenko S. O., Glamazdyn V. V., Shubny A. S., Kirilenko А. А., Kulik D. Y., Pylypenko A. M. (2019). Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System.
2. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Ob-jects. Radiofizyka i radioastronomiia, 24, No 3, 163—183. URL: http://rpra-journal.org.ua/index.php/ra/article/view/ (Last accessed 19.03.2021). DOI: https://doi.org/10.15407/rpra24.03.163.2. Ulyanov O. M., Zakharenko V. V., Alekseev E. A., Reznichenko O. M., Kulahin I. O., Budnikov V. V., Prysiazhnii V. I., Poikhalo A. V.,Voitiuk V. V., Mamariev V. M., Ozhinskyi V. V., Vlasenko, V. P., Chmil V. M., Sunduchkov I. K., Berdar M. M., Lebid V. I., Palamar M. I., Chaikovskii A. V., Pasternak Yu. V., Strembytskii, M. P. Natarov, S. O. Steshenko, V. V. Glamazdin, O. I. Shubnyi, A. O. Kyrylenko M. A., Kulyk D. Yu. (2020). The RT-32 Radio Telescope Construc-tion Based on the MARK-4B Antenna System. 3. Local Oscillators and Self-Noise of the Receiving System. Radiofizyka i radioastronomiia, 25, No 3, 175—192. URL: http://rpra-journal.org.ua/index.php/ra/article/view/1335 (Last accessed 19.03.2021).
3. Ulyanov О. М., Reznichenko O. М., Zakharenko V. V., Antyufeyev А. V., Korolev А. М., Patoka O. M., Prisiazhnii V. I., Poikhalo А. V., Voityuk V. V., Mamarev V. N.,Ozhinskyi V .V., Vlasenko V. P., Cmil V. M., Lebed V. I., Palamar M. I., Chaikovskii А. V., Pasternak Yu. V., Strembitskii M. A., Natarov М. P., Steshenko S. O., Glamazdyn V. V., Shubny A. S.,. Kirilenko А. А, Kulik D. Y., Konovalenko А. А., Lytvynenko L. M., Yatskiv Ya. S. (2019). Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 1. Modernization Project and First Results. Radiofizyka i radioastronomiia,24, No 2, 87—116. URL: http://rpra-journal.org.ua/index.php/ra/article/view/1309/973 (Last accessed 19.03.2021).
4. Klepko V. Yu., Golets V. L. (2009). Hyperboloids. Higher Mathematics in Examples and Problems: 2nd edition. К.: The study literature center, 157.
5. MARK-4B. Operation and maintenance handbook for antenna subsystem. Book 1. Part 1. Antenna structure. Tokyo. Japan, NEC Corporation, 1986.
6. Ozhinskyi V. V., Vlasenko V. P., Poikhalo A. V. (2020). Radio telescope RT-32 in space researches. 20-th Gamow International Astronomical Conference-School “Astronomy and beyond: Astrophysics, cosmology and gravitation, high energy physics, astroparticle physics, radioastronomy and astrobiology” (9–16 August, 2020, Odessa, Ukraine).
7. Ulyanov O. (2019). The New Ukrainian Radiotelescope RT-32. First Results. International Workshop “RT-32 Zolochiv: First results, eu collaboration, radio astronomy frontiers” (Оctober 3—5, 2019, Zolochiv, Ukraine).