Wave-particle interaction during electron beam-modulated injection into the ionospheric plasma. Theory and experiment
1Baranets, NV, 1Ruzhin, Yu.Ya., 2Vojta, J 1Pushkov Institute of Terrestrial Magnetism, Ionosphere and Propagation of Radio Waves of the Russian AS, Troitsk, Russia 2Institute of Atmospheric Physics of the Academy of Sciences of Czech Republic, Prague, Czech Republic |
Space Sci. & Technol. 2021, 27 ;(6):016-037 |
https://doi.org/10.15407/knit2021.06.016 |
Язык публикации: Ukrainian |
Аннотация: We present the results of the active space experiment with charged particle beam's injection (electrons and xenon ions) carried out onboard Intercosmos-25 station and daughter Magion-3 subsatellite. The ones are obtained under conditions when the particle beams were injected in opposite directions relative to the magnetic field B0 in such a way that the electron injection was directed towards the Earth. Mechanisms of beam-plasma instabilities relative to the excitation of electrostatic and electromagnetic waves are considered during the electron beam injection (~10 keV, 0.1 A) from the Intercosmos-25 station. Development of transverse instability on the first cyclotron resonance leads to the excitation of whistler mode waves backward-propagating relative to the injected electrons (from the Earth).
The investigation object was the beam-excited differential fluxes of ionospheric electrons in a wide energetic range of 27 eV — 412 keV registered by the charged particle spectrometers onboard the Magion-3 subsatellite. Thereby, the interaction of whistler waves with ionospheric electron fluxes is stimulated by the energy transfer mechanisms such as 'particle-wave-particle'. Numerical results of beam-plasma instabilities are compared also with thermal plasma parameters registered at different space points on the station and subsatellite. Excitation of longitudinal and transverse beam-plasma instabilities will inevitably lead to their competition, which will affect the results of the experiment.
The data of stimulated fluxes of ionospheric electrons allow us to investigate the various effects of the wave-particle interaction, taking into account the influence of the growth rate of longitudinal instability on the excitation angle of whistlers and their structure. This approach is based on the results of laboratory experiments to determine the pattern of excited whistlers for an electric dipole antenna and the analogy of the beam-plasma channel with the radiating system. The results of the active space experiment confirm the dependence of the growth rate of whistler mode waves on the development of longitudinal beam instability.
|
Ключевые слова: beam instabilities, cyclotron resonances, wave-particle interaction, whistlers |
1. Baranets N., Ruzhin Yu., Erokhin N., Afonin V., Vojta J., Smilauer J., Kudela K., Matisin J., Ciobanu M. (2014). Resonance effects of wave-particle interactions during artificial charged particle beam injections in an ionospheric plasma. Space Sci. and Technol., 20 (5), 3-26.
2. Kaptsov N. A. (1960). Radiophysical electronics. Moscow: Moscow State University Publishing House.
3. Kitsenko O. B., Stepanov K. M. (1961). About the passage of a beam of charged particles through a magnetoactive plasma. Ukr. J. Phys., 6 (3), 297-307.
4. Kovalenko V. P. (1983). Electron bunches in nonlinear collective interaction of beams with plasma. Soviet Physics Uspekhi, 139 (2), 223-263.
https://doi.org/10.3367/UFNr.0139.198302b.0223
5. Mikhailovskij A. B. (1975). Theory of plasma instabilities. Moscow: Atomizdat. Vol. 1.
6. Nezlin M. V. (1976). Waves with negative energy and the anomalous Doppler effect. Soviet Physics Uspekhi, 120 (3), 481-495.
https://doi.org/10.3367/UFNr.0120.197611g.0481
7. Albert J. M. (2000). Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave. J. Geophys. Res., 105 (A9), 21191-21209.
https://doi.org/10.1029/2000JA000008
8. An X., Bortnik J., Van Compernolle B., et al. (2017). Electrostatic and whistler instabilities excited by an electron beam.Phys. Plasmas, 24, 072116.
https://doi.org/10.1063/1.4986511
9. An X., Van Compernolle B., Bortnik J., et al. (2016). Resonant excitation of whistler waves by a helical electron beam. Geophys. Res. Lett., 43 (6), 2413-2421.
https://doi.org/10.1002/2015GL067126
10. Baranets N., Ruzhin Yu., Dokukin V., et al. (2017). Injection of 40kHz-modulated electron beam from the satellite: I. Beamplasma interaction near the linear stability boundary. Adv. Space Res., 59 (12), 2951-2968.
https://doi.org/10.1016/j.asr.2017.03.030
11. Baranets N., Ruzhin Yu., Dokukin V., et al. (2020). Injection of 40-kHz-modulated electron beam from the satellite: II. Excitation of electrostatic and whistler waves. Adv. Space Res., 65 (1), 30-49.
https://doi.org/10.1016/j.asr.2019.08.027
12. Baranets N., Ruzhin Yu., Erokhin N., et al. (2012). Acceleration of energetic particles by whistler waves in active space experiment with charged particle beams injection. Adv. Space Res., 49 (5), 859-871.
https://doi.org/10.1016/j.asr.2011.12.001
13. Bell T. F., Buneman O. (1964). Plasma instability in the whistler mode caused by a gyrating electron stream. Phys. Rev., 133 (A5), A1300-A1302.
https://doi.org/10.1103/PhysRev.133.A1300
14. Borg G. G., Harris J. H., Martin N. M., et al. (2000). Plasmas as antennas: Theory, experiment and applications. Phys. Plasmas, 7 (5), 2198-2202.
https://doi.org/10.1063/1.874041
15. Briggs R. J. (1964). Electron-stream interaction with plasmas. Cambridge. Massachusets: The M. I. T. Press.
https://doi.org/10.7551/mitpress/2675.001.0001
16. Denig W. F., Maynard N. C., Burke W. J., et al. (1991). Electric field measurements during supercharging events on the MAIMIK Rocket Experiment. J. Geophys. Res., 96 (A3), 3601-3610.
https://doi.org/10.1029/90JA02103
17. Fried B. D., Conte S. D. (1961). The plasma dispersion function. New York: Academic Press.
18. Fu X. R., Cowee M. M., Liu K., et al. (2014). Particle-in-cell simulations of velocity scattering of an anisotropic electron beam by electrostatic and electromagnetic instabilities. Phys. Plasmas, 21, 042108.
https://doi.org/10.1063/1.4870632
19. Kiraga A., Klos Z., Oraevsky V. N., et al. (1995). Observation of fundamental magnetoplasma emissions excited in magnetosphere by modulated electron beams. Adv. Space Res., 15 (12), 21-24.
https://doi.org/10.1016/0273-1177(95)00004-X
20. Lizunov G., Volokitin A., Blazhko I. (2002). Dynamics and relaxation of an artificial electron beam. Adv. Space Res., 29 (9), 1391-1396.
https://doi.org/10.1016/S0273-1177(02)00192-8
21. Němeček Z., Šafránková J., Přech L., et al. (1997). Artificial electron and ion beam effects: Active Plasma Experiment. J. Geophys. Res., 102 (A2), 2201-2211.
https://doi.org/10.1029/95JA03571
22. Přech L., Němeček Z., Šafránková J., et al. (2002). Actively produced high-energy electron bursts within the magnetosphere: the APEX project. Ann. Geophys., 20, 1529-1538.
https://doi.org/10.5194/angeo-20-1529-2002
23. Přech L., Ruzhin Yu. Y., Dokukin V. S., et al. (2018). Overview of APEX project results. Front. Astron. Space Sci., 5, Id. 46. DOI:10. 3389/fspas. 2018. 00046.
https://doi.org/10.3389/fspas.2018.00046
24. Stenzel R. L. (1976). Antenna radiation patterns in the whistler wave regime measured in a large laboratory plasma. Radio Sci., 11 (12), 1045-1056.
https://doi.org/10.1029/RS011i012p01045
25. Stenzel R. L. (1999). Whistler waves in space and laboratory plasmas J. Geophys. Res., 104 (A7), 14,379-14,395.
https://doi.org/10.1029/1998JA900120
26. Timofeev I. V., Volchok E. P., Annenkov V. V. (2016). Theory of a beam-driven plasma antenna. Plasma Phys., 23, 083119. https: doi. org/10. 1063/1. 4961218
https://doi.org/10.1063/1.4961218