Atomic Oxygen in Low Earth Orbits: a Retrospective Review Study
Рубрика:
Mahmoud, WM, Elfiky, D, Robaa, SM, Elnawawy, MS, Yousef, S |
Space Sci. & Technol. 2023, 29 ;(2):32-44 |
https://doi.org/10.15407/ knit2023.02.032 |
Язык публикации: English |
Аннотация: The article presents a retrospective review of atomic oxygen (AO) research in low Earth orbit (LEO). The space environment of LEO is a barrier to all satellites passing through it. Several of its constituent parts pose a great danger to satellite materials and subsystems. Such orbits are convenient for remote sensing and experimental satellites. In order to maintain the operational level of spacecraft, it is necessary to carry out thorough studies of the LEO environment and its components. AO, which is a hyperactive state of oxygen, is considered one of the most dangerous components of the LEO environment. It can react with many materials and thereby change the physical, optical and mechanical properties that affect the functionality of the satellite. To maintain the satellite in its orbit with a certain margin of reliability, it is necessary to reduce the aggressive influence on it of the environmental components of LEO. Predicting the impact of AO on materials that will be used in space ensures their correct selection. The work provides some recommendations for the creation of AO facilities for testing materials exposed to the aggressive influence of the space environment.
|
Ключевые слова: atomic oxygen, coronal mass ejections, Low Earth Orbits, space environment |
References:
1. Vest E. Charles, 1991: Hopkins J., 1991: APL Technical Digest, 12(1).
2. Banks B. A. and Miller S. K. R., 2006: Overview of Space Environment Effects on Materials and GRC's Test Capabilities, NASA Seal/Secondary Air System Workshop, Volume 1
3. Mundari N., 2011: Effect of Atomic Oxygen Exposure on Spacecraft Charging Properties, Diss. PhD thesis, Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Japan.
4. Bank B. B.; Groah K. K. de. And Miller S. K., 2004: Low Earth Orbital Atomic Oxygen Interaction with Spacecraft Materials, NASA/TM-213400.
5. Samwell S., 2014: Low earth orbital atomic oxygen erosion effect on spacecraft materials. Space Res J 7(1):1-13.
6. Mahmoud W. M.; Elfiky D. and Robaa S. M., 2021: Effect of Atomic Oxygen on LEO CubeSat, Int. J. Aeronaut. Space Sci. 22: 726-733.
7. Harris I. L.; Chambers A. R. and Roberts G. T., 1998: Results from the Space Technology Research Vehicle 1a Atomic Oxygen Experiment, Spacecraft and Rockets J, 35(5): 647-652
8. Mende S. B.; Swenson G. R. and Clifton K. S., 1984: Space plasma physics: atmospheric emissions photometric imaging experiment. Science, V 225: 191-193.
9. Caledonia G. E., 1989: Laboratory simulations of energetic atom interactions occuring in low Earth orbit, in Rarefied Gas Dynamics: Space Related Studies, (eds E.O. Munts, D.P. Weaver and D.H. Campbell), Progress in Astronautics and Aeronautics Series, AIAA, Menlo Park, CA, 116:129-142.
10. Banks B. A.; de Groh K. K. and Miller S. K., 2005: Low Earth orbital atomic oxygen interactions with spacecraft materials, Materials Research Society Symposium Proceedings, 851.
11. Santiago-Prowald and Salghetti Drioli L., 2012: Space Environment and Materials, in Space Antenna Handbook, William A. Imbriale, Steven (Shichang) Gao and Luigi Boccia, The Netherlands, 99: 106-137
12. Dickerson R. E.; Gray H. B. and Haight G. P., 1979: Chemical Principles, The Benjamin/Cummings Publishing Company Cummings, Menlo Park, p. 457.
13. Dever J.; Banks B.; de Groh K. and Miller S., 2005: Degradation of spacecraft materials, in Handbook of Environmental Degradation of Materials, William Andrew, Norwich, NY., pp. 465-501.
14. Arnold G. S. and Peplinksi D. R., 1986: Reaction of high-velocity atomic oxygen with carbon. AIAA J., 24(4): 673-677.
15. De Groh K. K., Banks B. A. and Mccarthy C. E., (2008): MISSE 2 PEACE polymers atomic oxygen erosion experiment High Performance Polymers, international space station J., 20(4-5): 388409.
16. Lu Y.; Shao Q.; Yue H. and Yang F., 2019: A Review of the Space Environment Effects on Spacecraft in Different Orbits, IEEE Access, 7: 93473-93488.
17. Dennison J. R.; Bruson J.; Swaminathan P.; Wesley N. and Frederickson A. R., 2006: Method of High Resistivity Measurement Related to Spacecraft Charging; IEEE transaction on plasma society, 34(5): 2204-2218.
18. Hasting D. and Garrett H., 2004: Spacecraft Environment Interaction, Cambridge University press ISBN 0-521-60756-6, Chapter 1: 1-11.
19. Rana A. and Abdulmajeed M., 2016: Tribocorrosion, advancesin tribology,Pranav H. Darji (ed.) Intech Open.
20. Banks B. A.; de Groh K. K.; Backus J. A., 2008: Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers, Low Earth Orbit J.
21. Banks B. A.; Stueber T.; Miller S. K. and Groh K. K., 2017: Monte Carlo Computational Modeling of Atomic Oxygen Interactions.
22. Grossmann K. U. and Vollmann K., 1997: Thermal infrared measurements in the middle and upper atmosphere, Adv. Space Res., 19: 631- 638.
https://doi.org/10.1016/S0273-1177(97)00156-7
23. Mlynczak M. G.; Martin-Torres F. J.; Johnson D. G.; Kratz D. P.; Traub W. A. and Jucks K., 2004: Observations of the O (3 P) fine structure line at 63 mm in the upper mesosphere and lower thermosphere, Geophys. Res. J., 109, A12306,
24. Mlynczak M. G.; Hunt L. A.; Mast J. C.; Marshall B. T.; J. M. R.; Smith A. K.; Siskind D. E.; Yee J-H.; Mertens C. J.; Martin-Torres F. J.; Thompson R. E.; Drob D. P. and Gordley L. L., 2013: Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty. Geophysical Research - Atmospheres J., 118(11): 5724-5735.
25. Bourassa R. J.; and Gillis J. R., 1992: Atomic oxygen exposure of LDEF experiment trays: NASA Contractor Report. 26. Samaniego J. I.; Wang X.; Andersson L.; Malaspina D.; Ergun R. E. and Horányi M. A., 2018: Investigation of coatings for Langmuirprobes in an oxygen‐rich space environment. Geophysical Research: Space Physics J.,123: 6054-6064.
27. Samaniego J. I.; Wang X.; Andersson L.; Malaspina D.; Ergun R. E. and Horányi M. A., 2019: Investigation of coatings for Langmuirprobes: Effect of surface oxidation on photoemission characteristics. Geophysical Research: Space Physics J.,124: 2357-2361.
28. Schumm G.; Bonnell J. W.; Wygant J. R.; and amp Mozer F. S., 2020: Calculation of the atomic oxygen fluence on the Van Allen Probes. Geophysical Research: Space Physics J., 125, e2020JA027944.
29. Kleiman J.; Iskanderova Z.; Gudimenko Y.; and Horodetsky S., 2003: Atomic oxygen beam sources: a critical overview, Materials in a Space Environment, 540:313-324
30. Goto, A., Umeda, K., Yukumatsu, K. et al. Property changes in materials due to atomic oxygen in the low Earth orbit. CEAS Space J 13, 415-432 (2021).
31. Orient O. J.; Chutjian A. and Murad E., 1990: Collision of O-(2P) Ions and O (3P) Atoms with Surfaces", in "Materials Degradation in Low Earth Orbit (LEO)", Ed. Srinivasan V. and Banks B.A., A Publication of TMS (Minerals, Metals, Materials), 87-95.
32. Brinza D. E.; Coulter D. R.; Chung S. Y.; Smith K. O.; Moacanin J. and Liang R. H., 1989: A Facility of Studies of Atomic Oxygen Interactions With 3rd Materials, in Proc. Int. SAMPLE Electronics Conf,646-652.
33. Cross John B. and Cremers David A., 1986: High Kinetic Energy (1-10 eV) Laser Sustained Neutral Atom Beam Source, NIMB13:658-662. https://doi.org/10.1016/0168-583X(86)90586-0
34. Outlaw R.A., 1989: Producing Essentialy Pure Beam of Atomic Oxygen - by providing material which dissociates molecular oxygen and dissolves atomic oxygen into its bulk, US Patent, 4: 817-828.
35. Banks B. A.; Rutledge S. K.; Paulsen P. E. and Stueber T. J., 1989: Simulation of the Low Earth Orbital Atomic Oxygen Interaction with Materials by Means of an Oxygen Ion Beam, NASA TM-101971.
36. Ferguson D. C., 1990: Atomic Oxygen Effects on Refractory Materials,Materials Degradation in Low Earth Orbit (LEO), In Annual Meeting of the Minerals, Metals, and Materials Society , 97-105.
37. Caledonia G. E. and Krech R. H., 1990: Studies of the Interaction of 8 km/s Oxygen Atoms with Selected Materials, ibid, 145-154.
38. Cuthbertson J. W.; Langer W. D. and Motley R. W., 1991: Atomic Oxygen Beam Source for Erosion Simulation, ibid, 77-86.
39. Tennyson R. C. and Morison W. D., 1990: Atomic Oxygen Effects on Spacecraft Materials, ibid, 59-76.
40. Nikiforov A. P.; and Scurat V. E.; 1993: Kinetics of polyimide etching by supersonic beams consisting of atomic and molecular oxygen mixtures, Chemical Physics Letters, 212, (12):43-49.
https://doi.org/10.1016/0009-2614(93)87105-C
41. New Scientific Technologies in Industry, Encyclopedia, Chief editor Kasayev K. S., 2000: Space Environment Effects on Spacecraft Materials and Equipment, Editors Novikov L. S., Panasyuk M.I., Moscow, "Entsitech" (in Russian), 17.
42. Finckenor M. M.; Edwards D. L.; Vaughn J.; Schneider T. A.; Hovater M. A. and Hoppe D. T., 2002: Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center, NASA/TP -212076.
43. Dooling D.; Finckenor M.M., 1999: Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces", NASA/TP - -209-260.
44. Cuthbertson J. W.; Langer W. D. and Motley R. W., 1990: Atomic Oxygen Beam Source for Orbital Environments, Materials & Manufacturing,5(3): 387-396.
45. Krech R. H., and Caledonia G. E., 1993: AO Experiments at PSI, Report PSI.
46. Caledonia G. E.; Krech R. H. and Green B. D., 1987: A High Flux Source of Energetic Oxygen Atoms for Material Degradation Studies, AIAA J., 25: 59-63.
47. Caledonia G. E.; Krech R. H.; Green B. D. and Pirri A. N., 1990: US Patent Number 4,894,511, Jan. 16 1990.
48. Cazaubon B., Paillous A., Siffre J., and Thomas R., 1996: Five-Electron-Volt Atomic Oxygen Pulsed-beam Characterization by Quadrupolar Mass spectrometry, Spacecraft and Rockets J., 33(6).
49. Grossman E.; Guzman I.; Viel-Inguimbert V. and Dinguirard M., 2003: Modification of 5eV Atomic- Oxygen Laser Detonation Soruce, Spacecraft and Rockets J., 40(1): 110113.
50. Zhang J. G., Donna J., and Minton T. K., 2002: Reactive and inelastic scattering dynamic of hyperthermal oxygen atoms on a saturated hydrocarbon surface", Chemical Physics J.,17(13): 6239-6251.
51. Cross J. B.; Spangler L. H.; Hoffbauer M. A. and Archuleta F. A., 1987: High Intensity 5 eV CW Laser Sustained O-Atom Exposure Facility for Material Degradation Studies, SAMPE Quarterly, 18(2): 41-47.
52. Morison D.; Tennyson R. C. and French Y. B., 1988: Microwave Oxygen Atom Beams Source. Fourth European Symposium on Spacecraft Materials in Space Environment, CERT, Toulouse, France, pp. 435-441.
53. Scurat V. E.; Nikiforov A. P. and Ternovoy A. I., 1994: Investigations of Reactions of Thermal and Fast Atomic Oxygen (up to 5 eV) with Polymer Films, Proc. 6th Inter. Symp. On Materials in a Space Environment, ESTEC, Noordwijk, The Netherlands, pp 183-187
. 54. Vered R.; Lempert G.D.; Grossman E.; Haruvy Y.; Marom G.; Singer L.; and Lifshitz Y., 1994: Atomic Oxygen Erosion on Teflon FEP and Kapton H by Oxygen from Different Sources: Atomic Force Microscopy and Complementary Studies, Proc. 6th Symp. on Materials in Space Environment, ESTEC, Noordwijk, The Netherlands, pp. 175-179.
55. Tagawa M.; Kumiko Y.; Nobuo O. and Hiroshi K., 2000: Volume diffusion of atomic oxygen in.-SiO2 protective coating, High Performance Polymers, 12 (1): 53-63.
56. Titov V. I.; Solovyev G. G.; Tarasov J. I.; Chernik V. N.; Naumov S. F.; Demidov S. A. and Kutlaliev A. I., 1991: «Complex-2» Low Earth Orbital Environment Simulation Faculty for Materials Durability Evaluation", Proc. 5th Intern Symp. On Spacecraft Materials in Space Environment, Cannes, pp. 4345.
57. Chernik V. N., 1997: Atomic Oxygen Simulation by Plasmadynamic Accelerator with Charge Exchange", SP-399, Proc. 7th Int. Symp. Materials in Space Environment, Toulouse, pp 237-241.
58. Danilichev P. V.; Kudryavtsev N. N.; Mazyar O. A.; Smirnov N. V. and Suhov A. M., 1993: Pulsed Source of Fast Molecular Flux on the Base of Electromagnetic Shock Tube", Pribori i Tehnika Eksperimenta (in Russian), N4, pp. 151-155.
59. Outlaw R. A. and Davidson Mark R., 1994: Small Ultrahigh vacuum compatible hyperthermal oxygen atom generator, J. Vac. Sci. Technol.,12 (3): 854-860.
60. Shively J.; Miglionico C.; Roybal R.; King T.; Robertson R.; Baird J.; Davis S. and Stein C., 1997: Combined Effects of the Lower Earth Orbit Environment on polymeric materials, High temperature and environmental effects on polymeric composites, ASTM STP1302, American Society for Testing and Materials, 2: 223-242.
61. Jia-nian S.; Yan-fa H.; Long-jiang Z. and Meishuan L., 2001: The generation and control of high flux neutral atomic oxygen beam, High Power Laser and particle Beams,13 (2): 228-232.
62. Sun G.; Tong J. and Li J., 1999: The deceleration and neutralization systems for microwave discharge atomic oxygen simulation, Chinese Space Science and Technology (1000-758X),19 (6): 5357.
63. Wang J.; Yu Z.; Cai C.; Li H. and Zhang J., 1998: Coaxial atomic oxygen simulation facility and its properties, Chinese Space Science and Technology (1000-758X),18 (5): 50-55.