Probability of target distinguishment by the contrast-limited thermal vision system of the drone

1Kolobrodov, MS, 2Lykholit, MI, 2Tiagur, VM, 1Vasylkovska, IO, 1Kolobrodov, MS
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
2Special Device Production State Enterprise “Arsenal”, Kyiv, Ukraine
Space Sci. & Technol. 2023, 29 ;(5):020-032
https://doi.org/10.15407/knit2023.05.020
Язык публикации: Ukrainian
Аннотация: 
Equipping modern unmanned aerial vehicles (UAVs) with thermal imaging cameras expands their potential utilization in various environmental conditions, enabling efficient aerial reconnaissance and execution of combat-related tasks. The primary objectives for target discrimination encompass detection, recognition, and identification. However, existing methods and algorithms for determining the probability of distinguishing targets do not offer an efficient and swift means of calculating these probabilities based on the target's distance.
       This article aims to develop a novel method for calculating the probability of detecting, recognizing, and identifying an object (target) using a thermal imaging surveillance system. The proposed approach involves an improved algorithm that utilizes the Johnson criterion, as per the NATO standard 4347, the Schultz approximation of the threshold contrast for the operator's perception of the image on the display screen, and incorporates the objective function of probability transfer along with probability transfer functions based on the target's distance. An example illustrating the calculation of the target discrimination probability is included to provide clarity. With the suggested algorithm, the probability of detecting, recognizing, and identifying the target through the contrast-limited thermal imaging system of the drone can be rapidly calculated.
Ключевые слова: recognition and identification of the target; range to the target; threshold contrast perception; probability transfer function by distance to the target, unmanned aerial vehicle with a thermal imaging camera; probability of detection
References: 

1. Definition of nominal static ranger performance for thermal imaging systems (1995). STANAG 4347.

2. Dobrovol's'ka K. V., Kolobrodov V. H., Mykytenko V. I., Tiahur V. M. (2018). Increasing the spatial resolution of space microbolometric cameras. Kyiv: Vik print. 223 p.

3. Driggers R. G., Friedman M H., Devitt J. W., Furxhi O., Singh A. (2002). Introduction to infrared and electro-optical systems (3th ed.). Artech House, 712 p.

4. Driggers R. G., et al. (2021). Simple target acquisition model based on Fl/d. Opt. Eng., 60 (2).
https://doi.org/10.1117/1.OE.60.2.023104

5. Holst G. C. (2008). Electro-optical imaging system performance (5th ed.). Winter Park, Florida: JCD Publishing, 502 p.

6. Kaplan H. (2010). Practical applications of infrared thermal sensing and imaging equipment (3th ed.). Washington, USA: SPIE Press, 192 p.

7. Keßler S., Galb R., Wittenstein W. (2017). TRM4: Range performance model for electro-optical imaging Systems. Fraunhofer Institute of Optronics, System Technologies and Image. Proc. of SPIE., 10178, 101780P.
https://doi.org/10.1117/12.2262543

8. Kolobrodov V. G. (2019). Modulation transfer function of the thermal imaging monocular. Visnyk NTUU KPI. Ser. Radiotekhnika. Radioaparatobuduvannia, 74-78.
https://doi.org/10.20535/RADAP.2019.78.74-78

9. Kolobrodov V. G. (2022) The influence of the probability of object recognition by a thermal imager on the maximum observation range. Visnyk NTUU KPI. Ser. Radiotekhnika Radioaparatobuduvannia, 88, 77-85 [In Ukrainian].

10. Kolobrodov V. G., Lykholit M. I., Mykytenko V. I., Tiagur V. M., Dobrovolska K. V. (2017). Calculation model for optoelectronic remote sensing system's radiometric resolution at arbitrary viewing angles. Visnyk NTUU KPI. Ser. Radiotekhnika Radioaparatobuduvannia, 69, 30-34.
https://doi.org/10.20535/RADAP.2017.69.30-34

11. Kolobrodov V. H., Lykholit M. I. (2007). Design of thermal imaging and television surveillance systems. Kyiv: NTUU KPI, 364 p.

12. Kolobrodov V. H., Lykholit M. I., Tiahur V. M., Pinchuk B. Yu. (2021). Image distortion in Earth remote sensing systems at arbitrary viewing angles. Space Science and Technology, 27 (3), 51-65.

13. Melamed R., Yitzhaky Y., Kopeika N. S., Rotman S. R. (1998). Experimental comparison of three target acquisition models. Opt. Engineering, 37 (7), 1902-1913.
https://doi.org/10.1117/1.602029

14. Peri'c D., Livada B., Peri'c M., Vuji'c S. (2019). Thermal imager range: Predictions, expectations and reality. Vlatacom Institute, 11070 Belgrade, Serbia, Sensors 2019, 19, 3313.
https://doi.org/10.3390/s19153313

15. Ratches J., Vollmerhausen R., Driggers R. (2001). Target acquisition performance modeling of infrared imaging systems: Past, present, and future. IEEE Sensors J., 1 (1), 31-40.
https://doi.org/10.1109/JSEN.2001.923585

16. Teaney B. P. (2012). Human target acquisition performance. Proc. SPIE., 8355.
https://doi.org/10.1117/12.979252

17. Teaney B., Reynolds J. (2010). Next generation imager performance mode. Proc. SPIE, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, 21, 7662.
https://doi.org/10.1117/12.850876

18. Vollmer M., Mollman K.-P. (2018). Infrared thermal imaging. Fundamentals, research, and applications (2th ed.). Wiley VCH, Weinheim, Germany, 788 p.

19. Zeng Y., Zhang R., Lim T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications magazine, 54 (5), 36-42.
https://doi.org/10.1109/MCOM.2016.7470933