A statistical study of the explosive waves launched by the Tonga super-volcano on January 15, 2022
1Chernogor, LF, 1Shevelev, MB 1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine |
Space Sci. & Technol. 2024, 30 ;(1):66-79 |
https://doi.org/10.15407/knit2024.01.066 |
Язык публикации: Ukrainian |
Аннотация: The eruption of Hunga Tonga-Hunga Ha’apai volcano (briefly known as the Tonga volcano), which was the largest explosion recorded by modern instrumentation, attained a maximum on January 15, 2022. Only the Krakatoa eruption of August 26–27, 1883, could have rivaled the atmospheric disturbance produced. The initial volcanic plume rose to 58 kilometers, the greatest height ever reported. The Tonga volcano created a chain of effects in all subsystems of the Earth — atmosphere — ionosphere — magnetosphere system, which requires a more detailed analysis. The purpose of this paper is to determine the main parameters of the probability density function of the wave generated in the air by the explosion of the Tonga super-volcano on January 15, 2022. The statistical study of the parameters of the explosive wave launched by the Tonga super-volcano has established the following. The time delay of the arrival of the wave increases with increasing distance between the volcano and the observatory taking measurements. The speed of propagation for the explosive wave remains virtually unalterable in the range of up to 136.5 Mm. Different techniques for estimating the speed yield the values of 313…315 m/s. At a particular distance between the volcano and the observatory taking measurements, the amplitude of the explosive wave is observed to fluctuate wildly (by a factor of 2 or greater), which is dependent on the orientation of the propagation path and on the state of tropospheric weather along the propagation path. The radiated wave front has been established to be well approximated by a cylindrical wave. This fact, together with the speed of propagation, suggests that the explosive wave made 4-fold travel around the Earth as a Lamb wave of the Earth’s atmosphere.
|
Ключевые слова: explosive wave, Lamb wave, polynomial regression, scatter diagram, statistical parameters, time delay, Tonga volcano, wave amplitude, wave velocity |
1. Chernogor L. F. (2012). Physics and ecology of the catastrophes. (Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ.) [in Russian].
2. Chernogor L. F. (2020). Parameters of the Infrasonic Signal Generated in the Atmosphere by Explosion of Powerful Volcano. Physics of atmosphere and geospace. 1(1), 5-20.
https://doi.org/10.47774/phag.01.01.2020-1
3. Aa E., Zhang S.-R., Erickson P. J., Vierinen J., Coster A. J., Goncharenko L. P., Spicher A., Rideout W. (2022). Significant Ionospheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption. Geophysical Research Letters. 20(7), e2022SW003101.
https://doi.org/10.1029/2022SW003101
4. Aa E., Zhang S.-R., Wang W., Erickson P. J., Qian L., Eastes R., Harding B. J., Immel T. J., Karan D. K., Daniell R. E., Coster A. J., Goncharenko L. P., Vierinen J., Cai X., Spicher A. (2022). Pronounced Suppression and X-Pattern Merging of Equatorial Ionization Anomalies After the 2022 Tonga Volcano Eruption. Journal of Geophysical Research: Space Physics. 127(6), e2022JA030527.
https://doi.org/10.1029/2022JA030527
5. Amores A., Monserrat S., Marcos M., Argüeso D., Villalonga J., Jordà G., Gomis D. (2022). Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption. Geophysical Research Letters. 49(6), e2022GL098240.
https://doi.org/10.1029/2022GL098240
6. Astafyeva E., Maletckii B., Mikesell T. D., Munaibari E., Ravanelli M., Coisson P., Manta F., Rolland L. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters. 49(10), e2022GL098827.
https://doi.org/10.1029/2022GL098827
7. Burt S. (2022). Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022. Weather. Special Issue:
https://doi.org/10.1002/wea.4182
8. Carr J. L., Horváth Á., Wu D. L., Friberg M. D. (2022). Stereo plume height and motion retrievals for the record-setting Hunga Tonga-Hunga Ha'apai eruption of 15 January 2022. Geophysical Research Letters. 49, e2022GL098131.
https://doi.org/10.1029/2022GL098131
9. Carvajal M., Sepúlveda I., Gubler A., Garreaud R. (2022). Worldwide signature of the 2022 Tonga volcanic tsunami. Geophysical Research Letters. 49(6), e2022GL098153.
https://doi.org/10.1029/2022GL098153
10. Chen C.-H., Zhang X., Sun Y.-Y., Wang F., Liu T.-C., Lin C.-Y., Gao Y., Lyu J., Jin X., Zhao X., Cheng X., Zhang P., Chen Q., Zhang D., Mao Z., Liu J.-Y. (2022). Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Tonga-Hunga Ha'apai Underwater Volcano Eruption on 15 January 2022. Remote Sensing. 14(9), 2179.
https://doi.org/10.3390/rs14092179
11. Ern M., Hoffmann L., Rhode S., Preusse P. (2022). The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophysical Research Letters. 49(10), e2022GL098626.
https://doi.org/10.1029/2022GL098626
12. Gossard E. E., Hooke W. H. Waves in the Atmosphere. New York: Elsevier, 1975. 456 p.
13. Harding B. J., Wu Y.-J. J., Alken P., Yamazaki Y., Triplett C. C., Immel T. J., Gasque L. C., Mende S. B., Xiong C. (2022). Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON-MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents. Geophysical Research Letters. 49(9), e2022GL098577.
https://doi.org/10.1029/2022GL098577
DOI:10.1029/2022GL098577
https://doi.org/10.1029/2022GL098577
14. Imamura F., Suppasri A., Arikawa T., Koshimura S., Satake K., Tanioka Y. (2022). Preliminary Observations and Impact in Japan of the Tsunami Caused by the Tonga Volcanic Eruption on January 15, 2022. Pure and Applied Geophysics. 179, 1549-1560.
https://doi.org/10.1007/s00024-022-03058-0
15. Kubota T., Saito T., Nishida K. (2022). Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science. 377(6601), 91-94.
https://doi.org/10.1126/science.abo4364
16. Kulichkov S. N., Chunchuzov I. P., Popov O. E., Gorchakov G. I., Mishenin A. A., Perepelkin V. G., Bush G. A., Skorokhod A. I., Vinogradov Yu. A., Semutnikova E. G., Šepic J., Medvedev I. P., Gushchin R. A., Kopeikin V. M., Belikov I. B., Gubanova D. P., Karpov A. V., Tikhonov A. V. (2022). Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure and Applied Geophysics. 179, 1533-1548.
https://doi.org/10.1007/s00024-022-03046-4
17. Le G., Liu G., Yizengaw E., Englert C. R. (2022). Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophysical Research Letters. 49(11), e2022GL099002.
https://doi.org/10.1029/2022GL099002
18. Lin J.-T., Rajesh P. K., Lin C. C. H., Chou M.-Y., Liu J.-Y., Yue J., Hsiao T.-Y., Tsai H.-F., Chao H.-M., Kung M.-M. (2022). Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere After Hunga-Tonga Volcano Eruptions. Geophysical Research Letters. 49(8), e2022GL098222.
https://doi.org/10.1029/2022GL098222
19. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Pérez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022). Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science. 377(6601). P. 95-100.
https://doi.org/10.1126/science.abo7063
20. Matoza R. S., Fee D., Assink J. D., Iezzi A. M., Green D. N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J. M., Nishida K., Gee K. L., Haney M. M., Ortiz H. D., Brissaud Q., Martire L., Rolland L., Vergados P., Nippress A., Park J., Shani-Kadmiel S., Witsil A., Arrowsmith S., Caudron C., Watada S., Perttu A. B., Taisne B., Mialle P., Le Pichon A., Vergoz J., Hupe P., Blom P. S., Waxler R., De Angelis S., Snively J. B., Ringler A. T., Anthony R. E., Jolly A. D., Kilgour G., Averbuch G., Ripepe M., Ichihara M., Arciniega-Ceballos A., Astafyeva E., Ceranna L., Cevuard S., Che I.-Y., De Negri R., Ebeling C. W., Evers L. G., Franco-Marin L. E., Gabrielson T. B., Hafner K., Harrison R. G., Komjathy A., Lacanna G., Lyons J., Macpherson K. A., Marchetti E., McKee K. F., Mellors R. J., Mendo-Pérez G., Mikesell T. D., Munaibari E., Oyola-Merced M., Park I., Pilger C., Ramos C., Ruiz M. C., Sabatini R., Schwaiger H. F., Tailpied D., Talmadge C., Vidot J., Webster J., Wilson D. C. (2022). Supplementary Materials for Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science. 377(6601).
https://doi.org/10.1126/science.abo7063
21. Otsuka S. (2022). Visualizing Lamb waves from a volcanic eruption using meteorological satellite Himawari-8. Geophysical Research Letters. 49(8), e2022GL098324.
https://doi.org/10.1029/2022GL098324
22. Poli P., Shapiro N. M. (2022). Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Ha'apai Explosion From Teleseismic Waves. Geophysical Research Letters. 49(8), e2022GL098123
https://doi.org/10.1029/2022GL098123
23. Ramírez-Herrera M. T., Coca O., Vargas-Espinosa V. (2022). Tsunami Effects on the Coast of Mexico by the Hunga Tonga-Hunga Ha'apai Volcano Eruption, Tonga. Pure and Applied Geophysics. 179, 1117-1137.
https://doi.org/10.1007/s00024-022-03017-9
24. Saito S. (2022). Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha'apai on 15 January 2022. Earth, Planets and Space. 74, 57. DOI:10.1186/s40623-022-01619-0
https://doi.org/10.1186/s40623-022-01619-0
25. Schnepf N. R., Minami T., Toh H., Nair M. C. (2022). Magnetic Signatures of the 15 January 2022 Hunga Tonga-Hunga Ha'apai Volcanic Eruption. Geophysical Research Letters. 49(10), e2022GL098454
https://doi.org/10.1029/2022GL098454
26. Tanioka Y., Yamanaka Y., Nakagaki T. (2022). Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption. Earth, Planets and Space. 74, 61.
https://doi.org/10.1186/s40623-022-01614-5
27. Terry J. P., Goff J., Winspear N., Bongolan V. P., Fisher S. (2022). Tonga volcanic eruption and tsunami, January 2022: globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau. Geoscience Letters. 9, 24.
https://doi.org/10.1186/s40562-022-00232-z
28. The Encyclopedia of Volcanoes (Second Edition), Academic Press, 2015. 1421 p.
https://doi.org/10.1016/B978-0-12-385938-9.00063-8
29. Themens D. R., Watson C., Žagar N., Vasylkevych S., Elvidge S., McCaffrey A., Prikryl P., Reid B., Wood A., Jayachandran P. T. (2022). Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophysical Research Letters. 49(7), e2022GL098158.
https://doi.org/10.1029/2022GL098158
30. Vergoz J., Hupe P., Listowski C., Le Pichon A., Garcés M. A., Marchetti E., Labazuy P., Ceranna L., Pilger C., Gaebler P., Näsholm S. P., Brissaud Q., Poli P., Shapiro N., De Negri R., Mialle P. (2022). IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth and Planetary Science Letters. 591, 117639.
https://doi.org/10.1016/j.epsl.2022.117639
31. Wright C. J., Hindley N. P., Alexander M. J., Barlow M., Hoffmann L., Mitchell C. N., Prata F., Bouillon M., Carstens J., Clerbaux C., Osprey S. M., Powell N., Randall C. E., Yue J. (2022). Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha'apai eruption. Nature.
https://doi.org/10.1038/s41586-022-05012-5
32. Yamazaki Y., Soares G., Matzka J. (2022). Geomagnetic Detection of the Atmospheric Acoustic Resonance at 3.8 mHz During the Hunga Tonga Eruption Event on 15 January 2022. Journal of Geophysical Research: Space Physics. 127(7), e2022JA030540.
https://doi.org/10.1029/2022JA030540
33. Yuen D. A., Scruggs M. A., Spera F. J., Zheng Y., Hu H., McNutt S. R., Thompson G., Mandli K., Keller B. R., Wei S. S., Peng Z., Zhou Z., Mulargia F., Tanioka Y. (2022). Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano. Earthquake Research Advances. 2(3), 100134.
https://doi.org/10.1016/j.eqrea.2022.100134
34. Zhang S.-R., Vierinen J., Aa E., Goncharenko L. P., Erickson P. J., Rideout W., Coster A. J., Spicher A. (2022). 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Frontiers in Astronomy and Space Sciences. 9, 871275.
https://doi.org/10.3389/fspas.2022.871275