АСТРОНОМИЧЕСКИЕ НАБЛЮДЕНИЯ И МОНИТОРИНГОВЫЕ ИССЛЕДОВАНИЯ ЗЕМЛИ С ПОВЕРХНОСТИ ИЛИ С ОРБИТЫ ЛУНЫ И ИХ НАЗЕМНОЕ СОПРОВОЖДЕНИЕ
Видьмаченко, АП, Казанцева, ЛВ, Мороженко, АВ, Чолий, ВЯ, Неводовский, ПВ |
Косм. наука технол. 2019, 25 ;(5):25-75 |
https://doi.org/10.15407/knit2019.05.025 |
Язык публикации: Украинский |
Аннотация: Современное состояние развития космической отрасли в передовых странах мира подошло вплотную к созданию на Луне постоянно действующей базы. Такой дорогостоящий проект должен предусматривать максимальную экономическую отдачу и использование полезной научной нагрузки для широкого круга исследований в различных областях науки. К научным лунным программ должны быть включены вопросы, которые невозможно решить наземными методами. В работе приводится историческая справка по исследованиям Луны, краткая хронология таких исследований и перечень задач, которые можно решать по лунной базе.
Рассмотрены особенности минералогического картирования поверхностного слоя, возможность использования лунной базы для астрономических наблюдений, проекты расположения обсерваторий на поверхности Луны, объекты для наблюдений с лунной поверхности и предложены методы таких исследований. Некоторые из подобных исследований можно будет выполнять, используя специальную аппаратуру, установленную на предложенной Государственным конструкторским бюро «Южное» для развертывания на Луне промышленно-исследовательской базе. Одной из задач является исследование либрации Луны по наблюдениям суточных и годовых треков звезд путем их сравнения с теоретическими моделями внутреннего строения нашего спутника. С лунной базы также предлагается выполнять фотометрические, спектральные и спетрополяриметрические исследования Земли.
|
Ключевые слова: астрономические наблюдения, история астрономии и космонавтики, Луна, лунная база, наблюдения с лунной поверхности, селенология, физическая либрация Луны |
1. Aleksandrov Yu. V. (2009). Vozmuschennoe dvizhenie iskusstvennogo suputnika Lunyi po proekt u «Ukrselena». Kosm. nauka tehnol., 15(1), 5—8 [in Russian].
2. Belkovich I. V. (1949). Fizicheskaya libratsiya Lunyi. Izvestiya OAE, 24, 1—246 [in Russian].
https://doi.org/10.1097/00001888-194907000-00009
3. Zharkov V. N., Pankov V. L., Kalachnikov A. A., Osnach A. I. (1969). Vvedenie v fiziku Luny. M.: Nauka [in Russian].
4. Kislyuk V. S. (1972). Deformatsiya selenodezicheskoy opornoy seti pod vliyaniem oshibok postoyannyih vrascheniya Luny. Astrometriya i astrofizika, 16, 30—40 [in Russian].
5. Kislyuk V. S. (1988). Geometricheskie i dinamicheskie harakteristiki Luny. K.: Naukova dumka [in Russian].
6. Kolachek B., Rogovski E. (1975). Opredelenie selenograficheskih koordinat i parametrov vraschatelnogo dvizheniya Lunyi s ee poverhnosti po izmereniyam zenitnyih rasstoyaniy.Astron. zhurnal, 52(4), 867—874 [in Russian].
7. Kondratyuk Yu. (1972). Zavoyuvannya mizhplanetnih prostoriv. Nyu-York [in Russian].
8. Kulikovskiy P. G. (1961). Yan Geveliy (k 350-letiyu so dnya rozhdeniya). Istoriko-astronomicheskie issledovaniya Istoriko-astronomicheskie issledovaniya,7, 257—288 [in Russian].
9. Levantovskiy V. I. (1980). Mehanika kosmicheskogo poleta v elementarnom izlozhenii. 3-e izd. M.: Nauka [in Russian].
10. Moutsulas M. D. (1973). Libratsii Lunyi. V kn. Fizika i astronomiya Lunyi pod. red. Z. Kopala. M. Mir, 36—70 [in Russian].
11. Nefedev A. A. (1963).Vyivod postoyannyih fizicheskoy libratsii Lunyi po metodu krakoviana. Izv. AOE, 34, 3—38 [in Russian].
12. Stolyarov G. M. (1980). Parametryi fizichekoy libratsii Luny, vyivedennyie iz Kazanskih geliometricheskih ryadov nablyudeniy Luny. Trudy Kazan. Gor. Astron. Observatorii, 46, 141—165 [in Russian].
13. Habibulin Sh. T. (1961). Vyivod postoyannyih fizicheskoy libratsii Lunyi iz geliometricheskih nablyudeniy Gartviga v Tartu (Derpte) po dannyam obrabotki K. Kozela. Trudy Kazan. Gor. Astron. Observatorii, 33, 1—16 [in Russian].
14. Habibulin Sh. T. (1966). Nelineynaya teoriya fizicheskoy libratsii lunyi. Trudy Kazan. Gor. Astron. Observatorii, 34, 3—70 [in Russian].
15. Habibullin Sh. T. (1988). Razvitie teorii fizicheskoy libratsii Lunyi i selenotsentricheskie sistemyi koordinat. Kinematika i fizika nebesnyih tel, 4(1), 35—42 [in Russian].
16. Tsiolkovskiy K. E. (1938). Na Lune. Grezyi o Zemle i nebe, Izd. Vtoroe, M.-L.: GONTI [in Russian].
17. Choliy V., Bahonskiy A. (1990). Opredelenie vidimyih mest zvezd, Dep. VINITI, 5005-V90 [in Russian].
18. Shakirov K. S. (1976). Dvizhenie Lunyi otnositelno tsentra mass. Saratov, izd. Saratovskogo un-ta [in Russian].
19. Shevchenko V. V. (1963). Vidimyie peremescheniya Zemli na nebe Luny. Kosm. issledovaniya, 1(2), 216—220 [in Russian].
20. Shevchenko V. V. (1967). Astroorientatsiya na Lune pri fizicheskih issledovaniyah. Kosm. issledovaniya, 5(6), 930—938 [in Russian].
21. Shkuratov Yu. G., Bondarenko N. V., Kachanov A. S. (1998). Zadachi lunnogo polyarnogo sputnika posle KA «Klementina». Kosm. nauka tehnol., 4(1), 46—53 [in Russian].
22. Shkuratov Yu. G., Kaydash V. G., Pieters C. M. (2005). Lunar Clinopyroxene and Plagioclase: Surface Distribution and Composition. Solar System Res., 39(4), 255—266.
https://doi.org/10.1007/s11208-005-0041-2
23. Shkuratov Yu. G., Kislyuk V. S., Litvinenko L. N., Yatskiv Ya. S. (2004). Model Luny 2004 dlya proekta «Ukrselena». Kosm. nauka tehnol. Dodatok 2, 52 [in Russian].
24. Yakovkin A. A. (1961). Metod pozitsionnyih uglov dlya opredeleniya fizicheskoy libratsii Lunyi. Izv. GAO AN USSR, 4(1), 3—13 [in Russian].
25. Yakovkin A. A. (1963). Astrometriya na Lune (programma astrometricheskih nablyudeniy na statsionarnoy Lunnoy observatorii). Trudy 15-y astrometricheskoy konferentsii SSSR, 412—416 [in Russian].
26. Yakovkin A. A. (1963). Otchet o rabote podkomissii po izucheniyu dvizheniya i figuryi Lunyi za 1958—1960. Trudy 15-y astrometricheskoy konferentsii SSSR, 29—31 [in Russian].
27. Yakovkin A. A., Demenko I. M., Miz L. N. (1965). Formulyi i metodyi lunnoy prakticheskoy astrometrii. Trudy 16-y astrometricheskoy konferentsii SSSR, 119—121 [in Russian].
28. Yakovkin A. A., Kizyun L. N., Demenko I. M. (1964). Formulyi i efemeridyi dlya polevyih nablyudeniy na Lune. K.: Nauk. Dumka [in Russian].
29. Angel R., Eisenstein D., Sivanandam S., Worden S. P., Burge J., Borra E., Gosselin C., Seddiki O., Hickson P., Ma Ki Bui, Foing B., Josset J.-L., Thibault S., Van Susante P. (2006). A Lunar Liquid Mirror Telescope (LLMT) for deep-field infrared observations near the lunar pole. Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter. Ed. by J. C. Mather, H. A. MacEwen, M. W. M.de Graauw. Proceedings of the SPIE. 6265, id. 62651U.
https://doi.org/10.1117/12.669994
30. Arnold H. J. P. (1972). The moon’s first astronomical observatory. Br. J. Photogr., 119, 310—311.
31. Bandfield J. L., Hayne P. O., Williams J. -P., Greenhagen B. T., Paige D. A. (2015). Lunar surface roughness derived from LRO Diviner Radiometer observations. Icarus, 248, 357—372.
https://doi.org/10.1016/j.icarus.2014.11.009
32. Bely P. Y., Breckinridge J. B. (1994). Space astronomical telescopes and instruments. Proc.of the Meet. SPIE. Orlando, FL, 1991. 544 p.
33. Bestwick J. D. (1961). Reports of Sections: Report of Lunar Section Meeting. J. Brit. Astron. Assoc., 71, 241.
34. Bhandari N., Srivastava N. (2015). Active moon: evidences from Chandrayaan-1 and the proposed Indian missions. Geosci. Lett., 1. Article id.11, 12 p.
35. Borra E. F., Seddiki O., Angel J. R. P., Worden S. P., Eisenstein D., Silvanandam S., Hickson P., Ma K. A. (2005). Deep-Field Infrared Observatory Near the Lunar Pole. J. Roy. Astron. Soc. Can., 99(4), 134.
36. Borra W. (1991). The Case for a Liquid Mirror in a Lunar- Based Telescope. Astrophys. J. 373, 317—321.
https://doi.org/10.1086/170053
37. Bruston P., Mumma M. J. (1994). Solar system exploration from the Moon: Synoptic and comparative study of bodies in our Planetary system. Adv. Space Res. 14(6), 143—158.
https://doi.org/10.1016/0273-1177(94)90021-3
38. Burke B. F. (1985). Astronomical Interferometry on the Moon. Lunar Bases and Space Activities in the 21st Century. Houston, Lunar and Planetary Institute. P. 281—291.
39. Burke J. D. (1989). Lunar observatories. Spaceflight, 31, 308—309.
40. Burke J., Kaltenegger L. (2017). Advantages of a Lunar Cryogenic Astronomical. 19th EG. General Assembly, EGU2017. Proc. conf. Vienna, Austria. P. 9326.
41. Burlak O., Zaetz I., Soldatkin O., Rogutskyy I., Danilchenko B., Mikheev O., de Vera J.-P., Vidmachenko A., Foing B., Kozyrovska N. (2010). The inducible CAM plants in putative lunar lander experiments. 38th COSPAR Scientific Assembly. P. 11.
42. Burns J. (1985). A Moon-Earth Radio Interferometer. Lunar Bases and Space Activities in the 21st Century. Houston, Lunar and Planetary Institute. P. 293—300.
43. Burns J. O. (1990). A review of recent lunar observatories workshops. Astrophysics from the Moon: Proc. of the Workshop. New York. P. 305—314.
https://doi.org/10.1063/1.39339
44. Burns J. O. The Moon as a Site for Astronomical Observatories. The Next Generation Space Telescope. 1990. P. 341.
45. Burns J. O., Mendell W. W. (1988). Future Astronomical Observatories on the Moone. Future Astronomical Observatories on the Moone. Workshop held in Houston, TX, 10 Jan. 1986; sponsored by NASA, Johnson Space Flight Center, Houston, TX and American Astronomical Society. Washington, DC.
46. Cao Li, Ruan P., Cai H., Deng J., Hu J., Jiang X., Liu Zh., Qiu Y., Wang J., Wang Sh., Yang J., Zhao F., Wei J. (2011). LUT: A lunar-based ultraviolet telescope. Sci. China Phys., Mech. and Astron., 54(3), 558—562.
https://doi.org/10.1007/s11433-011-4255-7
47. Cappalo R. .J., King R. W., Counselman C. C., Shapiro J. J. (1981). Numerical model of the Moon’s rotation. Moon and Planets, 24(3), 281—289.
https://doi.org/10.1007/BF00897102
48. Cassini G. D. (1693). Traite de l’origine et du progres de l’astronomie. Paris: Gauthier-Villars.
49. Chen P. C., Van Steenberg M. E., Oliversen R. J. (2008). Moon dust telescopes, solar concentrators, and structures. American Astronomical Society. AAS Meeting #212, id.25.07. Bull. Amer. Astron. Soc., 40, 223.
50. Choliy V. Ya. (2014). On the precision estimation of fundamental planetary ephemerides. Kinematics and Physics of Celestial Bodies, 30(6), 304—307.
https://doi.org/10.3103/S0884591314060038
51. Choliy V. Ya., Kazantseva L. V., Morozhenko O. V., Vidmachenko A. P., Nevodovskyi P. V. (2017). Observations of stars from the lunar surface for the study of libration. International Conference Astronomy and Space Physics in Kyiv University: abstracts. Kyiv, P. 98—100.
52. Choliy V. Ya., Vidmachenko A. P., Kazantseva L. V., Morozhenko O. V., Nevodovskyi P. V. (2017). Study of Moon’s physical libration by observing the sky from its surface. 17th Ukrainian Conference on Space Research: Abstracts. Odessa, P. 48.
53. Choliy V. Ya., Vidmachenko A. P., Kazantseva L. V., Nevodovskyi P. V. (2017). Investigation of the Moon’s libration according to observations of stars from its surface. 19 International scientific conference Astronomical School of Young Scientists. The program and abstracts. Bila Tserkva, P. 78—79.
54. Colaprete A., Ennico K., Wooden D., Shirley M., Heldmann J., et al. (2010). Water and More: An Overview of LCROSS Impact Results. 41st Lunar and Planetary Science Conference. March 1—5 2010. The Woodlands, Texas. P. 2335.
55. Colaprete A., Schultz P., Heldmann J., Wooden D., Shirley M., Ennico K., Hermalyn B., Marshall W., Ricco A., Elphic R. C., Goldstein D., Summy D., Bart G. D., Asphaug E., Korycansky D., Landis D., Sollitt L. (2010). Detection of water in the LCROSS ejecta plume. Science, 330, 463—468.
https://doi.org/10.1126/science.1186986
56. Crites S. T., Lucey P. G. (2010). Characterization of Lunar Soils Using a Thermal Infrared Microscopic Spectral Imaging System. American Geophysical Union. Fall Meeting. Abstract #P53A-1505.
57. Cutts J. A., Swanson P. (1990). Four lunar astronomical observatories — Concepts developed in the NASA 90-day study for the Human Exploration Initiative. Astrophysics from the moon,. Proc. of the Workshop. New York: American Institute of Physics. P. 528—537.
https://doi.org/10.1063/1.39319
58. Davis J. M., Balasubramaniam, K. S., Gary G. A., Moore R. (1990). A lunar based solar observatory — Rationale and concepts. Astrophysics from the moon,. Proceedings of the Workshop. New York: American Institute of Physics. P. 567—577.
https://doi.org/10.1063/1.39322
59. Di Cara D. M., Estublier D. (2005). Smart-1: An analysis of flight data. Acta Astronautica, 57, 250—256.
https://doi.org/10.1016/j.actaastro.2005.03.036
60. Douglas J. N., Smith H. J. (1985). A very low frequency radio astronomy observatory on the moon. Lunar bases and space activities of the 21st century. Houston, TX, Lunar and Planetary Institute. P. 301—306.
61. Douglas J. N., Smith H. J. (1988). A very low frequency radio astronomy observatory on the Moon. NASA Conf. Publ. NASA CP-2489. P. 113—118.
62. Drean R. J., Caylor M. A., Choi D. U., Edelsohn C. R., Gurley J. G., Hagen F. A., Landecker P. B., Su G. W., Tillman M. L., Wassgren C. R. (1991). Engineering design of an unmanned lunar radio observatory. Robotic telescopes in the 1990s: Proceedings of the Symposium, 103rd Annual Meeting of the Astronomical Society of the Pacific, Univ. of Wyoming, Laramie. June 22-24 P. 347—358.
63. Durst S. (2004). International Lunar Observatories and Power Stations: From Hawaii to the Moon. Proc. of the Intern. Lunar Conf. 2003. San Diego CA, USA. P. 67.
64. Durst S. (2008). International Lunar Observatory Association (ILOA): 3 Mission Update — ILO-X Precursor, ILO-1 Polar, ILO Human Service Mission. Joint Annual Meeting of LEAG-ICEUM-SRR. Cape Canaveral, Florida. LPI Contrib. No. 1446.
65. Durst S. (2015). International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon. IAU General Assembly. Meeting #29, id.2255715.
66. Durst S. (2018). Astronomy from the Moon: A New Frontier for 21st Century Astrophysics. American Astronomical Society – AAS Meeting #232. id. 402.01.
67. Eckhardt D. H. (1981). Theory of the libration of the Moon. Moon and Planets, 25(1), 3—49.
https://doi.org/10.1007/BF00911807
68. Exploring the Universe: Space-Based Astronomy and Astrophysics (J. M. Logsdon) (2001). Ed. Amy Paige Snyder, R. D. Launius, S. J. Garber, and Regan Anne Newport.Washington, D.C.: National Aeronautics and Space Administration, NASA History Office, Office of Policy and Plans. Т.V: Exploring the Cosmos. P. 501—545.
69. Foing B. H. (2016). Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG). 41st COSPAR Scientific Assembly: abstracts. Turkey: At the Istanbul Congress Center (ICC). Abstract PEX.1-2-16.
70. Foing B. H. (2016). Towards a Moon Village: Community Workshops Highlights. 41st COSPAR Scientific Assembly: abstracts. Turkey: At the Istanbul Congress Center (ICC). Abstract PEX.2-7-16.
71. Frontera F., de Chiara P., Pasqualini G. (1994). Hard Xray (greater than 10 keV) telescope for space astronomy from the Moon. Adv. Space Res., 14(6), 89—96.
https://doi.org/10.1016/0273-1177(94)90011-6
72. Genet R. M., Hayes D. S., Boyd L. J. (1990). Autonomous Robotic Observatories (AROs) on the Moon and Earth. Int. Amateur-Professional Photoelectric Photometry Commun., No. 42, 28.
73. Gleckler A. D., Pflibsen K. P., Ulich B. L., Smith D. D. (1991). Surface control techniques for the segmented primary mirror in the large lunar telescope. Space stronomical telescopes and instruments: Proceedings of the Meeting, Orlando, A92-45151 19-89. Bellingham, WA. Society of Photo-Optical Instrumentation Engineers, P. 454—471.
https://doi.org/10.1117/12.46743
74. Gopalswamy N., MacDowall R. J., Kaiser M. L., Demaio L.D., Bale S. D., Howard R. E., Jones D. L., Kasper J. C., Kassim N. E., Lazio J. W., Weiler K. W., Reiner M. J. (2006). Mission Concepts for Spacecraft and Lunar-based Radio Source Imaging at Frequencies below the Ionospheric Cutoff. Long Wavelength Astrophysics, 26th meeting of the IAU, Joint Discussion 12. Prague, Czech Republic. JD12, #21.
75. Gorenstein P. (1990). High throughput X-ray telescope on a lunar base. Astrophysics from the moon: Proceedings of the Workshop. Annapolis, MD (A91-56576 24-89). New York: American Institute of Physics. P. 382—392.
76. Gorgolewski S. (1966). Lunar Radio Astronomy Observatory. Proceedings of the 1st Lunar International Laboratory (LIL) Symposium on Research in Geosciences and Astronomy: 16th International Astronautical Congress, Athens. Ed. F. J. Malina. Wien: Springer. P. 78.
https://doi.org/10.1007/978-3-662-25087-7_8
77. Grande M., Swinyard B., Joy K. H., Kellett B. J., Crawford I. A., Howe C. J. (2008). X-ray Fluorescence Observations of the Moon by SMART-1/D-CIXS. European Planetary Science Congress 2008. Proc. of the conference. Munster, Germany. P. 532.
78. Grun E., Horanyi M., Auer S., Robertson S., Srama R., Sternovsky Z. (2008). Dust Telescope on the Lunar Surface. NLSI Lunar Science Conference. Moffett Field, California: NASA Ames Research Center. LPI Contribution No. 1415, abstract no. 2132.
79. Guo H., Liu G., Ding Y., Zhang D. (2012). Conceptual Research of Lunar-Based Earth Observation for Global Environmental Change. 39th COSPAR Scientific Assembly. Mysore, India. Abstract E2.2-7-12. P. 684.
80. Gusev A., Hanada H., Kikuchi F., Matsumoto K., Kosov A., Nefedyev Y., Petrova N., Ping J., Titov O. (2014). Lunar radio-beacons and geodetic VLBI system for determination of physical libration of the Moon. 40th COSPAR Scientific Assembly. Moscow, Russia. Abstract B0.1-57-14.
81. Hall R. C. (1977). Lunar impact. NASA history series. 1. Project Ranger. NASA. Vol. 476, p. 7.
82. Hanada H., Araki H., Tazawa S. (2012). Development of a digital zenith telescope for advanced astrometry. Sci. China-Phys., Mech. Astron., 55(4), 723—732.
https://doi.org/10.1007/s11433-012-4673-1
83. Hanada H., Ping J., Funazaki K., Kawano N., Petrova N. (2010). Development of a photographic zenith tube for observation of the lunar rotation and the deflection of the vertical. Proc. IAG Symp. on Terrestrial Gravimetry. Saint Petersburg, Russia. P. 125—129.
84. Hayn F. (1914). Die Rotationselemente des Mondes und der definitive Ort von M sting A. Astron. Nachr., 199(18), 261—263.
https://doi.org/10.1002/asna.19141991804
85. Hilchey J. D., Nein M. E. (1995). Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century. J. Brit. Int. Soc., 48(2), 77—82.
86. Huang Ch.-Li. (2015). LOTT: A new small telescope to monitor lunar orientation parameters. IAU General Assembly. Meeting #29, id.2300711.
87. Iakovkin A. A. (1964). Formulas and Ephemerides Intended for Field Observations on the Moon. Kiev: Naukova dumka.
88. Illingworth G. D. (1990). 16 M UV-visible-IR lunarbased telescope. Astrophysics from the moon: Proceedings of the Workshop, Annapolis, A91-56576 24-89. New York: American Institute of Physics. P. 472—485.
https://doi.org/10.1063/1.39312
89. Isobe S. (1995). Ground-based and Lunar-based Observations of Near-Earth Asteroids. Proceedings of the 27th Symposium on Celestial Mechanics. Ed. by Hiroshi Kinoshita and Hiroshi Nakai. Tokyo, Japan. P. 45.
90. Isobe S. (1997). JAPAN Neo Team. A Strategy to detect the NEOs: From Ground-based to Lunar-based Observations. Interactions between Planets and Small Bodies. 23rd meeting of the IAU, Joint Discussion 6. Meeting abstract. Kyoto, Japan.
91. Isobe S. (1999). Proposed lunar-based telescopes for NEO observations. Adv. Space Res., 23(11), 1861—1863.
https://doi.org/10.1016/S0273-1177(99)00537-2
92. Iwata T., Imai K., Misawa H., Noda H., Kondo T., Nakajo T., Takeuchi H., Kumamoto A., Tsuchiya F., Nariyuki Y., Asari K., Kawano N. (2010). A Study on the Moon-Earth Baseline Interferometry for Jovian Low Frequency Radio Observation. 41st Lunar and Planetary Science Conference. The Woodlands, Texas: LPI Contribution No. 1533. P. 1677.
93. Jeong M., Choi Y.-J., Kim S. S., Kang K.-I., Shkuratov Y. G., Kaydash V. G., Videen G., Sim C. K., Kim I.-H. (2017). Preliminary Design of Wide-Angle Polarimetric Camera for the First Korean Lunar Mission. Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting. Flagstaff, Arizona. LPI Contribution No. 1986. id.7035.
94. Jin W., Zhang H., Yuan Y., Yang Y., Shkuratov Y.G., Lucey P.G., Kaydash V.G., Zhu M.-H., Xue Bin, Di K., Xu Bin, Wan W., Xiao L., Wang Z. (2015). In situ optical measurements of Chang’E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith. Geophys. Res. Lett., 42(20), 8312—8319.
https://doi.org/10.1002/2015GL065789
95. Johnson C. L., Dietz K. L. (1991). Effects of the lunar environment on optical telescopes and instruments. Space astronomical telescopes and instruments: Proceedings of the Meeting, Orlando. A92-45151 19-89. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers. P. 208—218.
96. Johnson S. W. (1988). Design of lunar base observatories. NASA Conf. Publ., NASA CP-2489, 127—134.
97. Johnson S. W., Burns J. O., Chua K. M., Duric N., Gerstle W. H. (1990). Lunar astronomical observatories — Design studies. J. Aerospace Eng. 3. P. 211—222.
https://doi.org/10.1061/(ASCE)0893-1321(1990)3:4(211)
98. Johnson S. W., Leonard R. S. (1984). Lunar-based platforms for an astronomical observatory. Optical Platforms. SPIE Proc., 493, 147.
https://doi.org/10.1117/12.943793
99. Johnson S. W., Rohloff K. J., Whitmire J. N., Pyrz A. P., Ullrich G. W., Lee D. G. (1971). The Lunar Regolith as a Site for an Astronomical Observatory. Space Technology and Science: Proceedings of the ninth international symposium. Tokyo, Japan. P. 1059.
100. Johnson S. W., Taylor G. J., Wetzel J. P. (1992). Environmental effects on lunar astronomical observatories. The Second Conference on Lunar Bases and Space Activities of the 21st. Century NASA. Johnson Space Cente. 1. P. 329—335.
101. Johnson S. W., Wetzel J. P. (1988). Advanced technology for a lunar astronomical observatory. Engineering, construction, and operations in space: Proceedings of the Space ’88 Conference, Albuquerque. New. York: American Society of Civil Engineers. P. 1102—1113.
102. Johnson S. W., Wetzel J. P. (1990). Required Technologies for A 10-16 m UV-Visible-IR Telescope on the Moon. The Next Generation Space Telescope. P. 348.
103. Jones D. L., MacDowall R. J., Bale S. D., Demaio L., Kasper J. C., Weiler K. W. (2005). Moon-based Epoch of Reionization Imaging Telescope (MERIT). Bull. Amer. Astron. Soc., 37, 458.
104. Jonson S. W. (1988). Design of Lunar Base Observatoties. Future Astronomical Observatoties on the Moon. NASA Conf. Publ., NASA CP-2489, 127—134.
105. Karoji H. (2000). From Ground Astronomy to Space and Lunar Astronomical Observatory. Proc. Adva. Space Technol. Workshop, 222.
106. Kassim N., Weiler K. W., Lazio J. W., MacDowall R. J., Jones D. L., Bale S. D., Demaio L., Kasper J. C. (2007). Solar and Planetary Observations with a Lunar Radio Telescope. American Geophysical Union, Fall Meeting. Abstract #SH33A-12.
107. Kaula W. M., Baxa P. A. (1973). The physical libration of the Moon, including higher garmonic effect. Moon, 8(3), 287—307.
https://doi.org/10.1007/BF00581725
108. Kazantseva L. V., Kislyuk V. S. (2007). History of lunar astrometry research in Kyiv. Studies of the near-Earth and small bodies of the Solar system: Proceedings of the international scientific conference. Nikolaev: Atoll. P. 300—307.
109. Keller J. W., Petro N. E. (2017). The Lunar Reconnaissance Orbiter Cornerstone Mission: A Focused and Synergistic Study of Fundamental Solar System Processes at the Moon. 48th Lunar and Planetary Science Conference. At The Woodlands, Texas. LPI Contribution No. 1964. id.2448.
110. King R. W., Counselman C. C., Shapiro J. J. (1976). Lunar Dynamics and selenodesy: results from analysis of VLBI and laser data. J. Geophys. Res., 81(35), 6251—6256.
https://doi.org/10.1029/JB081i035p06251
111. Kislyuk V. S. (2013). Space exploration of the Moon: current status and prospects (review). Kosm. nauka tehnol., 19(3), 5—20.
https://doi.org/10.15407/knit2013.03.005
112. Klimas P., Rowlands N., Hickson P., Borra E. F., Thibault S. (2010). Lunar liquid mirror telescope: structural concepts. Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray. Eds Arnaud, Monique; Murray, Stephen S.; Takahashi, Tadayuki. Proceedings of the SPIE. 7732. article id. 77322U. 12 p.
https://doi.org/10.1117/12.858198
113. Koch D. G., Hughes B. E. (1989). Arcsec source location measurements in gamma-ray astronomy from a lunar observatory. Physics and astrophysics from a lunar base: Proceedings of the 1st NASA Workshop. New York: American Institute of Physics. P. 278—282.
https://doi.org/10.1063/1.39110
114. Kondo Y., Oliversen R. J., Lowman P., Chen P. C. (2001). A Moon Based Telescope To Detect and Image Extrasolar Planets. Bull. Amer. Astron. Soc., 33, 1319.
115. Kondratiev K. Ya., Gaevsky V. L., Konashenok V. N., Reshetnikov A. I. (1965). Lunar Meteorological Observatory for Observations of the Earth. Proc. of the 1st Lunar International Laboratory (LIL) Symposium on Research in Geosciences and Astronomy. 16th International Astronautical Congress Athens. Ed. by F. J. Malina. Wien: Springer. P. 35.
https://doi.org/10.1007/978-3-662-25087-7_5
116. Konopliv A. S., Binder A. B., Hood L. L., Kucinskas A. B., Sjogren W. L., Williams J. G. (1998). Improved Gravity Field of the Moon from Lunar Prospector. Science, 281, 1476—1480.
https://doi.org/10.1126/science.281.5382.1476
117. Konyukhov S. N., Degtyarev A. V., Kushnar’ov A. P., Berdnik A. I. (2009). Ukrainian space engineering for international lunar programs. Acta Astronautica, 64(1), 3—8.
https://doi.org/10.1016/j.actaastro.2008.06.012
118. Koziel K. (1967). The Constants of the Moon’s Physical Libration Derived on the Basis of Four Series of Heliometric Observations from the Years 1877 to 1915. Icarus, 7(1), 1—28.
https://doi.org/10.1016/0019-1035(67)90043-7
119. Koziel K. (1982). Libration of the Moon. Physics and astronomy of the Moon. New York, London: Academ. Press.
120. Koziel K. (1989). Constants of the moon’s free libration on the basis of heliometric observations from the years 1841—1945. Earth, Moon, and Planets, 45, 153—159.
https://doi.org/10.1007/BF00055782
121. Krat V. A. (1966). On Solar Observations at an International Observatory on the Moon. Proceedings of the 1st Lunar International Laboratory (LIL) Symposium on Research in Geosciences and Astronomy. 16th International Astronautical Congress Athens. Ed. by F. J. Malina. Wien: Springer. P. 98.
https://doi.org/10.1007/978-3-662-25087-7_10
122. Landecker P. B., Caylor M. A., Choi D. U., Drean R. J., Edelsohn C. R., Gurley J. G., Hagen F. A., Su G. W., Tillman M. L., Wassgren C. R. (1991). Telerobotically deployed lunar farside VLF observatory. Robotic telescopes in the 1990s: Proceedings of the Symposium, 103rd Annual Meeting of the Astronomical Society of the Pacific, Univ. of Wyoming, Laramie. P. 335—346.
123. Lawrence D. J., Feldman W. C., Elphic R. C., Little R. C., Prettyman T. H., Maurice S., Lucey P. G., Binder A. B. (2002). Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res. (Planets), 107E(12), 13.
https://doi.org/10.1029/2001JE001530
124. Levchenko T. A., Nevodovskyi P. V., Vidmachenko A. P., Morozhenko O. V., Saryboha H. V., Zbrutskyi O. V., Ivakhiv O. V. (2016). The test of the layout of polarimeter "UPP" on the telescope AZT-2. 18 International scientific conference Astronomical School of Young Scientists. The program and abstracts. Kyiv, Ukraine: National Aviation University. P. 66—67.
125. Liao W.-P., Qian Sh.-B., Zejda M., Zhu Li-Y., Li Lin-J. (2016). Lunar-based Ultraviolet Telescope study of the well-known Algol-type binary TW Dra. Res. Astron. and Astrophys., 16(6), article id. 94.
https://doi.org/10.1088/1674-4527/16/6/094
p>126. Liu J., Li Ch., Wang W., Zeng X., Mu L., Yang Y. (2019). Extraction of lunar domes from Chang’E-2 data with new method. Icarus, 321, 29—33.
https://doi.org/10.1016/j.icarus.2018.10.030
127. Lowman P. D. (1990). Candidate sites for lunar observatories, with a recommended example — The NE Orientale Basin. Astrophysics from the moon,: Proc. of the Workshop. P. 315—327.
https://doi.org/10.1063/1.39340
128. Lowman P. D. (1995). Candidate site for a robotic lunar observatory: The central peak of Riccioli crater. J. Brit. Int. Soc., 48(2), 83—86.
129. Lowman P. D. (1996). Lunar Limb Observatory: an Incremental Plan for the Utilization, Exploration, and Settlement of the Moon. Technical Report, National Aeronautics and Space Administration. Goddard Space Flight Center Greenbelt, MD United States.
130. Lunar and Planetary Meetings (1959). Sky and Telescope, 18, 299.
131. Lunar and Planetary Meeting at Montreal (1962). Sky and Telescope, 24, 194.
132. Manka R. H. (1988). Electric Potential and Fields at the Lunar Surface: Implications for a Lunar Plasma Observatory. Abstracts of papers presented to the Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston, TX. P. 167.
133. McCarter J. W. (1993). Site selection and its influence on the design of a lunar-based telescope. Conference Paper. AIAA Paper 93-4774.
134. McGraw J. T. (1992). The Lunar Transit Telescope (LTT) — an early lunar-based science and engineering mission. Engineering, construction, and operations in pace — III: Space ’92: Proceedings of the 3rd International Conference., Denver, CO. A93-41976 17-12. P. 1865—1879.
135. Meng X-M., Han X.-H.. Wei J.-Y., Wang J., Cao Li, Qiu Yu-Lei. Wu Ch., Deng J.-S., Cai H.-Bo, Xin Li-P. (2016). NUV Star Catalog from the Lunar-based Ultraviolet Telescope Survey: First Release Research in Astronomy and Astrophysics. 16, N 11. Article id. 168.
https://doi.org/10.1088/1674-4527/16/11/168
136. Migus A. (1980). Analitical lunar librational tables. Moon and Planets, 23(4), 391—427.
https://doi.org/10.1007/BF00897587
137. Moons M. (1982). Analytical theory of libration of the Moon. Moon and Planets, 27(3), 257—284.
https://doi.org/10.1007/BF00929297
138. Morozhenko A. V., Vid’machenko A. P. (2003). Apparatus for monitoring of global changes in the Earth with a lunar base or satellite in Lagrange point. Kosm. nauka tehnol., 9(2), 28—29.
139. Morozhenko A. V., Vidmachenko A. P. (2004). Moon Base and Problems of Global Changes on the Earth. J. Automation and Inform. Sci., 36(11), 27—31.
https://doi.org/10.1615/JAutomatInfScien.v36.i11.50
140. Morozhenko A. V., Vid’machenko A. P. (2005). Astronomical Polarimeters and Features of Polarimetric Observations. Photopolarimetry in Remote Sensing, NATO Sci. Ser. II: Mathematics, Physics and Chemistry, 161, 479—486.
https://doi.org/10.1007/1-4020-2368-5_22
141. Morozhenko A. V., Vid’machenko A. P. (2005). Polarimetry and Physics of Solar System Bodies. Photopolarimetry in Remote Sensing, NATO Sci. Ser. II: Mathematics, Physics and Chemistry, 161, 369—384.
https://doi.org/10.1007/1-4020-2368-5_16
142. Morozhenko A. V., Vidmachenko A. P., Nevodovskii P. V. (2013). Aerosol in the upper layer of earth’s atmosphere. Kinematics and Physics of Celestial Bodies, 29(5), 243—246.
https://doi.org/10.3103/S0884591313050073
143. Morozhenko A. V., Vidmachenko A. P., Nevodovskiy P. V., Kostogryz N. M. (2014). On the efficiency of polarization measurements while studying aerosols in the terrestrial atmosphere. Kinematics and Physics of Celestial Bodies, 30(1), 11—21.
https://doi.org/10.3103/S0884591314010061
144. Morozhenko O. V., Vid’Machenko A. P. (2002). Tasks or the spectropolarimetric experiment aboard the International Space Station. Kosm. nauka tehnol., 8(5/6), 39—44.
https://doi.org/10.15407/knit2002.05.039
145. Morozhenko O. V., Vid’Machenko A. P. (2017). Features of the method for mapping of physical characteristics of lunar surface according to the data of ultraviolet polarimetry. 17th Ukrainian Conference on Space Research: abstracts. Odessa.
146. Morozhenko O. V., Vidmachenko A. P. (2017). Possible space experiment "Mineralogical mapping of the Moon’s surface". 17th Ukrainian Conference on Space Research: abstracts. Odessa. P. 44.
147. Morozhenko O. V., Vidmachenko A. P., Nevodovskyi P. V., Choliy V. Ya. (2017). Monitoring of Global Climate Change in the Earth from the Moon. 17th Ukrainian Conference on Space Research: Abstracts. Odessa. P. 47.
148. Namiki N., Iwata T., Matsumoto K., Hanada H., et al. (2009). Farside Gravity Field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya). Science, 323(5916), 900—905.
https://doi.org/10.1126/science.1168029
149. NASA Conference Publication 2489 — Proc. workshop American Astronomical Society (1988). Washington, D.C., and the NASA Lyndon B. Johnson Space Center, Houston, Texas, and held in Houston, Texas January 10, 1986 "Future stronomical Observatories on the Moon". Ed. J. O. Burns.
150. Nefedyev Y. A., Valeev S. G, Mikeev R. R., Andreeva A. O., Varaksina N. Y. (2012). Analysis of data of "Clementine" and "Kaguya" missions and "ULCN" and "KSC- 1162" catalogues. Adv. Space Res., 50(11), 1564—1569.
https://doi.org/10.1016/j.asr.2012.07.012
151. Nein M. E., Hilchey J. D. (1995). The Lunar Ultraviolet Telescope Experiment (LUTE): Enabling technology for an early lunar surface payload. J. Brit. Interplanetary Soc. 48(2), 93—97.
152. Nevodovskyi P. V., Morozhenko O. V., Vidmachenko A. P., Ivakhiv O., Geraimchuk M., Zbrutskyi O. (2015). Tiny Ultraviolet Polarimeter for Earth Stratospherefrom Space Investigation. IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS-2015). Warsaw, Poland. Proc. 1. P. 28—32.
https://doi.org/10.1109/IDAACS.2015.7340695
153. Nevodovskyy P. V., Vidmachenko A. P., Morozhenko O. V., Herayimchuk M. D., Ivakhiv O. V. (2017). Remote polarimetric study of the stratospheric ozone layer with onboard of microsatellite. Thirteenth International Scientific Conference "AVIA-2017". Kyiv, Ukraine: National Aviation University. P. 26.5—26.9.
154. Nevodovskyi P. V., Vidmachenko A. P., Morozhenko O. V., Zbrutskyi O. V., Ivahiv O. V. (2017). Testing of the working model of electrophotopolarimeter on telescope. Problems of modern power engineering and automation in the system nature management (theory, practice, history, education). Proc. 6 Int. Scientific-Technical Conf., 78—80.
155. Nevodovskyi P. V., Vidmachenko A. P., Morozhenko O. V., Zbrutskyi O. V., Ivahiv O. V. (2017). Application of remote polarization studies of the Earth in the national economy. Problems of modern power engineering and automation in the system nature management (theory, practice, history, education). Proc. 6 Int. Scientific-Technical Conf., 73—75.
156. Newton I. (1686). Philosophiae Naturalis Principia Mathematica — Londini [i.e. London]: Jussu Societatis Regiae ac Typis Josephi Streater, Anno.
https://doi.org/10.5479/sil.52126.39088015628399
157. Noda H., Heki K., Hanada H. (2008). In situ Lunar Orientation Measurement (ILOM): Simulation of observation. Adv. Space Res., 42(2), 358—362.
https://doi.org/10.1016/j.asr.2007.01.025
158. Nozette S., Lichtenberg C. L., Spudis P. D., Bonner R., Ort W., Malaret E., Robinson M., Shoemaker E. M. (1996). The Clementine Bistatic Radar Experiment. Science, 274, 1495—1498.
https://doi.org/10.1126/science.274.5292.1495
159. Pallé E., Goode P. R. (2009). The Lunar Terrestrial Observatory: Observing the Earth using photometers on the Moon’s surface. Adv. Space Res., 43(7), 1083—1089.
https://doi.org/10.1016/j.asr.2008.11.022
160. Petrova N., Gusev A., Hanada H., Heki K., Kawano N. (2008). Interpretation of the Lunar physical libration for future observations from the Lunar surface. European Planetary Science Congress 2008. Proceedings of the conference. Minster, Germany. P. 231.
161. Petrova N., Hanada H. (2012). Computer simulating of stellar tracks for observations with the lunar polar telescope. Planet. Space Sci., 68(1), 86—93.
https://doi.org/10.1016/j.pss.2011.10.002
162. Petrova N. K., Hanada H. (2013). Computer simulation of observations of stars from the moon using the polar zenith telescope of the Japanese project ILOM. Solar System Res., 47(6), 463—476.
https://doi.org/10.1134/S0038094613060051
163. Popov E. G. (2000). New long-baseline planetar/space/ lunar-based interferometers. Proc. SPIE, 3932, 206—208.
https://doi.org/10.1117/12.384311
164. Porro I. (1997). A stellar interferometer on the Moon. PhD Thesis. Padova.
165. Qi Zh., Yu Yong, Cao Li, Cai H., Qiu Yu., Wei J., Tang Zh., Wang J., Deng J., Liao Sh., Guo S. (2015). Astrometric Support for the Lunar-based Ultraviolet Telescope. Publs Astron. Soc. Pacif., 127(957), 1152 .
https://doi.org/10.1086/683850
166. Rayman M. D., Sanders R. S. (1996). Optical Interferometry from the lunar surface. Adv. Space Res., 18(11), 45—48.
https://doi.org/10.1016/0273-1177(96)00087-7
167. Robert M. L., Baker Jr. (1962-1963). Utilization of the Laplacian method from a lunar observatory. Icarus, 1(1—6), 343—345.
https://doi.org/10.1016/0019-1035(62)90034-9
168. Romanyuk Ya. O., Kleschonok V. V., Reshetnyk V. M., Lukyanyk I. V., Svyatogorov O. O., Guziy S. S. (2012). The Kyiv internet telescope project. Astron. Soc. India Conf. Ser.,7, 297.
169. Romanyuk Ya. O., Kravchuk S. G., Kleschonok V. V. (2013). The Kyiv Internet telescope. Bull. Ukr. Earth Orientation Parameters Lab., 8, 68—70.
170. Romanyuk Ya. O., Vidmachenko A. P. (2015). KIT — automated small telescope. Astron. School’s Report, 11(2), 157—162.
https://doi.org/10.18372/2411-6602.11.2157
171. Ruan Zh., Liu G. Ding Y. (2016). Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion. 41st COSPAR Scientific Assembly, abstracts from the meeting. Turkey: Istanbul Congress Center (ICC). Abstract A0.2-27-16.
172. Samoylov A. V., Samoylov V. S., Vid’machenko A. P., Perekhod A. V. (2003). Using of Ahromatic and Super-Achromatic Zero-Order Waveplates in Polarimetric Astronomical Observations. NATO Advanced Study Institute on Photopolarimetry in Remote Sensing and Workshop on Remote Sensing Techniques and Instrumentation: International Cooperation. Ed. by G.Videen, Ya. Yatskiv, A. Vid’machenko, et. all. Yalta - Kyiv, Ukraine. P. 82.
173. Samoylov A. V., Samoylov V. S., Vid’machenko A. P., Perekhod A. V. (2004). Achromatic and super-achromatic zero-order waveplates. J. Quant. Spectrosc. and Radiat. Transfer., 88(1–3), 319—325.
https://doi.org/10.1016/j.jqsrt.2003.12.034
174. Sarkar R., Chakrabarti S. K. (2010). Feasibility of spectro-photometry in X-rays (SPHINX) from the moon. Exp. Astron., 28(1), 61—77.
https://doi.org/10.1007/s10686-010-9186-1
175. Schrutka-Rechtenstamm G. (1965). Zur physischen libration des Mondes. Mitt. Univ. Sternw. Wien., 8,(10), 151—213.
176. Shapiro M. M., Silberberg R. (1985). Celestial sources of high-energy neutrinos as viewed from a lunar observatory. Lunar bases and space activities of the 21st century. Houston, TX, Lunar and Planetary Institute. P. 329—333.
177. Shapiro M. M., Silberberg R. (1985). High-energy neutrinos from a lunar observatory. Goddard Space Flight Center 19th Intern. Cosmic Ray Conf. 8. P. 160-163.
178. Shkuratov Y. G., Konovalenko A. A., Stanislavsky A. A., Lytvynenko L. N., Vavriv D. M., Yatskiv Y. S., Vavilova I. B., Vid’machenko A. P., Kordum E. L., Zarka Ph., Rucker H. O., Zakharenko V. V., Kalinichenko N. N., Ulyanov O. M., Sidorchuk M. A., Stepkin S. V. (2017). Feasible Objectives of Ukrainian Participation in Prospective Lunar Missions. International Academy of Astronautics. 10th IAA Symposium on the Future of Space Exploration: Towards Space Village and Beyond. Program. Torino, Italy. P. 2.
179. Shkuratov Yu. G., Kreslavsky M. A., Litvinenko L. N., Negoda A. A. (2002). A Prospective Ukrainian Lunar Orbiter Mission: Objectives and Scientific Payload. 33rd Annual Lunar and Planetary Science Conference. Houston, Texas. Abstract no. 1234.
180. Shkuratov Yu. G., Lytvynenko L. M., Shulga V. M., Yatskiv Ya. S., Vidmachenko A. P., Kyslyuk V. S. (2003). Objectives of a prospective Ukrainian orbiter mission to the Moon. Adv. Space Res., 31(11), 2341—2345.
https://doi.org/10.1016/S0273-1177(03)00534-9
181. Slyuta E. N. (2014). Physical and mechanical properties of the lunar soil (a review). Solar System Res., 48(5), 330—353.
https://doi.org/10.1134/S0038094614050050
182. Stehling K. R. (1988). Lunar Observatory Ocean/Atmosphere Monitoring and Analysis for Global Change. Abstracts of papers presented to the Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston, TX. P. 232.
183. Stehling K. R., Levitt I. M. (1966). Lunar Astronomical Observatory. Proceedings of the 1st Lunar International Laboratory (LIL) Symposium on Research in Geosciences and Astronomy, 16th International Astronautical Congress Athens. Ed. by F. J. Malina. Wien: Springer. P. 48.
https://doi.org/10.1007/978-3-662-25087-7_6
184. Stockman H. S. (1988). Space and lunar-based optical telescopes. NASA Conf. Publ., NASA CP-2489. P. 63—71.
185. Stooke P. J. (2019). Identification of the Chang’E 1 spacecraft impact site on the Moon. Icarus, 319, 334—336.
https://doi.org/10.1016/j.icarus.2018.09.031
186. Sūn H., Dài Sh., Yáng J., Wú J., Jiāng J. (2005). Scientific objectives and payloads of Chang’E-1 lunar satellite. J. Earth System Sci., 114(6), 789—794.
https://doi.org/10.1007/BF02715964
187. SURVEYOR Program Results. NASA. 1969. 436 p.
188. Swanson P. N. (1992). The proposed NASA lunar-based astronomical observatories. Engineering, construction, and operations in space III: Space ’92; Proceedings of the 3rd International Conference. 2. P. 1798—1808.
189. Syniavskyi I., Ivanov Yu., Vidmachenko A. P., Sergeev A. (2015). Using a polarizing film in the manufacture of panoramic Stokes polarimeters at the Main Astronomical Observatory of NAS of Ukraine. Proceedings of the International conference. Terskol — M.: Yanus-K. P. 309—315.
190. Takahashi Y. (2002). A Lunar Far Side Radio Array As The First Astronomical Observatory On The Moon: Precursor Studies. EGS XXVII General Assembly. Nice. Abstract #5174.
191. Takahashi Y. D. (2003). A concept for a simple radio observatory at the lunar south pole. Adv. Space Res., 31(11), 2473—2478.
https://doi.org/10.1016/S0273-1177(03)00540-4
192. Takahashi Y. D. (2004). Radio Interferometer Observatory Near the Lunar South Pole. Proc. of the International Lunar Conference 2003. International Lunar Exploration Working Group 5: ILC2003 — ILEWG 5. Ed. by S. M. Durst. 108. P. 77.
193. Taylor G. J., Burns J. O., Fernini I., Johnson S. (1988). Site Selection Criteria for Astronomical Observatories on the Moon. Abstracts of papers presented to the Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston, TX. P. 238.
194. Tengström E. (1978). Meeting of the Special Study Group. Vol. 49 of IAG on "Use of Geodetic Data for Studies of the Earth-moon System". Uppsala, Sweden, 7-9 August 1978. Bull. G od siqu, 52(4), 335—336.
https://doi.org/10.1007/BF02521835
195. Thompson R. (1990). Infrared Detectors for a 10 m Space or Lunar Telescope. The Next Generation Space Telescope, Proceedings of a Workshop. Eds P.-Y. Bely, C. J. Burrows, G. D. Illingworth. Baltimore, MD: Space Telescope Science Institute and Washington. P. 310.
196. Tsuboi M., Kaifu N., Karoji H., Takeuchi S., Iwata T., Itoh N., Miyahara N. (1997). The Future Japanese Cosmic Background Aniostrophy Observatory at the Moon. Astronomy from the Moon, 23rd meeting of the IAU, Joint Discussion. Meeting abstract. Kyoto, Japan.
197. van Susante P. (2002). Design and Construction of a Lunar South Pole Infrared Telescope (LSPIRT). 34th COSPAR Scientific Assembly, The Second World Space Congress. Houston, TX, USA. Meeting abstract.
https://doi.org/10.1061/40625(203)15
198. Vid’machenko A. P. (2000). Information-measuring and registering system of an astronomical polarimeter. Baltic Astron., 9, 670—671.
https://doi.org/10.1515/astro-2000-0447
199. Vid’machenko A. P., Delec A. S., Nevodovskiy P. V., Andruk V. M. (2003). Digital panoramic polarimeter for remote investigatirn of an optical parameter of celestial bodies. Bull. Nat. Techn. Univ. Ukr. «Kyiv Polytechnic Institute». Ser. Instrument Making, 26, 12—18.
200. Vid’Machenko A. P., Ivanov Yu. S., Morozhenko A. V., Sosonkin M. G. (2002). UK spectrometer-polarimeter for planetary monitoring aboard the ISS. Kosm. nauka tehnol., 8(5/6), 45—50.
https://doi.org/10.15407/knit2002.05.045
201. Vid’Machenko A. P., Morozhenko A. V. (2004). Mapping of physical characteristics of the Moon’s superficial layer and ultra-violet polarimetry from a lunar orbital station. Kosm. nauka tehnol., 10(5/6), 21—27.
202. Vid’machenko A. P., Morozhenko A. V. (2005). Mapping of the physical characteristics and mineral composition of a superficial layer of the Moon or Mars and ultra- violet polarimetry from the orbital station. 36th Lunar and Planetary Science Conference. League City, Texas. Abstract #1015.
203. Vid’Machenko A. P., Morozhenko A. V. (2006). The application of the brewster angle data for the lunar surface mapping by the real part of the refractive index. Solar System Res., 40(6), 462—467.
https://doi.org/10.1134/S0038094606060037
204. Vid’machenko A. P., Nevododvsky P. V. (2000). A cooled photomultiplier with an InGaAs photocathode developed for the spectropolarimetry observations. Kinematika i Fizika Nebesnykh Tel. Suppl., No. 3, 283—285.
205. Vid’Machenko A. P., Nevodovskiy P. V. (2000). Experimental observations with cooled photometric head on the basis of a photomultiplier with the InGaAs photocathode. Kinematika i Fizika Nebesnykh Tel, 16(1), 72—79.
206. Vidmachenko A., Nevodovskiy P., Bardash O. (2003). Astronomical spectropolarimeter for remote investigation of an optical and physical properties of solar system bodies. Bull. Nat. Techn. Univ. Ukr. "Kyiv Polytechnic Institute". Ser. Instrument Making, 25, 45—52.
207. Vidmachenko A. P. (2001). Observations of planets in UV. "Ultraviolet Universe, Proceedings of the Conference "Scientific prospects of the space ultraviolet observatory SPECTRUM-UV". Ed. by B. M. Shustov, D. S. Wiebe. Moscow: GEOS. P. 209—220.
208. Vidmachenko A. P., Geraimchuk M. D., Dubinec V. I., Nevodovskiy E. P., Nevodovskiy P. V., Petrenko S. F. (2004). Ways of the modulation of the polarized light in astronomical device. Bull. Nat. Techn. Univ. Ukr. "Kyiv Polytechnic Institute". Ser. Instrument Making, 27, 61—66.
209. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. (2007). Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring". Kosm. nauka Tehnol., 13(1), 63—70.
https://doi.org/10.15407/knit2007.01.063
210. Vidmachenko A. P., Ivanov Yu. S., Syniavskyi I. I. (2015). The development of the imaging polarimeter’s polarizer on the basis of the polarizing film. Kosm. nauka tehnol., 21(4), 19—23.
https://doi.org/10.15407/knit2015.04.019
211. Vidmachenko A. P., Morozhenko A. V., Delets A. S., Nevodovskii P. V., Sosonkin M. G., Ivanov Yu. S., Andruk V. M. Digital panoramic polarimeter for groundbased attending the space experiment "Planetary monitoring". Kosm. nauka Tehnol., 2003. 9(2), 5—9.
212. Vidmachenko A. P., Nevodovskiy E. P., Ivanov J. S. (2007). The unified optics-mechanical block for surface astronomical devices. Bull. Nat. Techn. Univ. Ukr. "Kyiv Polytechnic Institute". Ser. Instrument Making, 33, 41—48.
213. Vidmachenko A. P., Nevodovskiy E. P., Nevodovskiy P. V. (2005). Light modulators for astronomical polarimeters. Astron. School’s Report, 5(1-2), 236—241.
https://doi.org/10.18372/2411-6602.05.1236
214. Vilas F. (1991). Astronomical Observatories on the Moon. Abstrs Lunar and Planetary Sci. Conf., 22, 1445.
215. Walker A. B. C., Timothy J., Hoover R. (1990). Astronomical EUV/X-ray observatories on the moon. Astrophysics from the moon,: Proceedings of the Workshop. New York: American Institute of Physics. P. 553—566.
https://doi.org/10.1063/1.39321
216. Wang J., Cao Li, Meng X.-M., Cai H.-Bo, Deng J.-S., Han Xu-Hui, Qiu Yu-Lei, Wang F., Wang Sh., Wen Wei-Bin, Wu Ch., Wei J.-Y., Hu J.-Yao. (2015). Photometric Calibration of the Lunar-based Ultraviolet Telescope for Its First Six Months of Operation on the Lunar Surface. Res. Astron. and Astrophys., 15(7), article id. 1068.
https://doi.org/10.1088/1674-4527/15/7/014
217. Warren P. H. (2003). The Moon. Treatise on Geochemistry. 1. Ed. A. M. Davis. Executive Editors: H. D. Holland, K. K. Turekian. Elsevier. P. 559—599.
https://doi.org/10.1016/B0-08-043751-6/01149-X
218. Williams J. G., Boggs D., Yoder Ch., Ratcliff J., Dickey J. (2001). Lunar rotational dissipation in solid body and molten core. J. Geophys. Res., 106E(11), 27,933—27,968.
https://doi.org/10.1029/2000JE001396
219. Wilson K. (1995). The first lunar observatory. Astronomy Now., 9(7), 48—54.
220. Wilson Th. L. (1990). Particle astronomy and particle physics from the moon — The particle observatory. Astrophysics from the moon: Proceedings of the Workshop. New York: American Institute of Physics. P. 608—621.
https://doi.org/10.1063/1.39353
221. Woan G. (1996). Design Considerations for a Moon-Based Radio Telescope Operating at Frequencies below 16 MHz. Large Antennas in Radio Astronomy. Proceedings of the workshop. Ed. C. G. M. Van’t Klooster and A. Van Ardenne. Noordwijk, Netherlands. ESTEC. P. 101.
222. Woodgate B. E. (1990). Visible and Ultraviolet Detectors for High Earth Orbit and Lunar Observatories. The Next Generation Space Telescope. P. 296.
223. Xiao L, Wang Q. (2017). China’s Lunar Exploration Programme. 2017 Annual Meeting of the Lunar Exploration Analysis Group. LPI Contribution No. 2041. id.5092.
224. Yano T., Gouda N., Kobayashi Y., Tsujimoto T., Nakajima T., Hanada H., Kanya Y., Yamada Y., Araki H., Tazawa S., Asari K., Tsuruta S., Kawano N. (2004). CCD Centroiding Experiment for the Japan Astrometry Satellite Mission (JASMINE) and In Situ Lunar OrientationMeasurement (ILOM). Publs Astron Soc. Pacif., 116(821), 667—673.
https://doi.org/10.1086/422399
225. Ye H., Liu G., Ren Y., Guo H., Ding Y. (2016). Analysis of visibility simulation of three polar regions from lunarbased earth observation. 41st COSPAR Scientific Assembly: abstracts. Turkey: Istanbul Congress Center (ICC).Abstract A0.2-16-16.
226. Yichun X., Zongyao S., Mei Yu. (2008). Remote sensing imagery in vegetation mapping: a review. J. Plant Ecology, 1(1), 9—23.
https://doi.org/10.1093/jpe/rtm005
227. Yingzhuo J.,Yongliao Z., Jinsong P. Changbin X., JunY., Yuanming N. (2018). The scientific objectives and payloads of Chang’E-4 mission. Planetary and Space Sci., 162(1), 207—215.
https://doi.org/10.1016/j.pss.2018.02.011
228. Zhang H., Yang Y., Yuan Ye., Jin W., Lucey P. G., Zhu M.-H., Kaydash V. G., Shkuratov Y. G., Di K., Wan W., Xu Bin, Xiao L., Wang Z., Xue Bin (2015). In situ optical measurements of Chang’E-3 landing site in Mare Imbrium. 1. Mineral abundances inferred from spectral reflectance. Geophys. Res. Lett., 42(17), 6945—6950.
https://doi.org/10.1002/2015GL065273
229. Zhang Zh., Zhang L., Tang Yi, Huang G. (2010). Lunar-based solar telescope of multi-wavelength. Proc. SPIE 7849. id. 78492M.
https://doi.org/10.1117/12.870485
230. Zheng Y.-Ch., Chan K. L., Tsang K. T., Zhu Y.-Ch., Hu G. P., Blewett D. T., Neish C. (2019). Analysis of Chang’E-2 brightness temperature data and production of high spatial resolution microwave maps of the Moon. Icarus, 319, 627—644.
https://doi.org/10.1016/j.icarus.2018.09.036
231. Zuber M. (2015). The Interior of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. EGU General Assembly 2015. Vienna, Austria. id.7269.