Instability of Kelvin-Helmholtz and magnetohydrodynamic modes on the boundary of geomagnetic tail

1Cheremnykh, OK, 1Cheremnykh, SO, 2Kozak, LV, 3Kronberg, EA
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
3Max Planck Institute, Göttingen, Germany
Space Sci. & Technol. 2019, 25 ;(2):43-59
https://doi.org/10.15407/knit2019.02.043
Мова публікації: Russian
Анотація: 
The paper focuses on the description of mathematical and theoretical methods for studying the longitudinal and oblique MHD modes generated by the solar wind, which are  localized near the boundary of the geomagnetic tail. On the contrary to the MHD modes propagating in the inner part of the Earth’s magnetic field, these modes have hardly been studied either theoretically or experimentally. It is shown that the problem of MHD oscillations on the boundary between two relatively moving plasma media is reduced to finding and studying the equation of small variations, as well as finding its boundary conditions. We present the procedure for obtaining the dispersion equation for MHD modes localized on the boundary between moving and stationary plasma media.
           The analysis revealed that one of the eight possible MHD modes could be unstable due to the development of the Kelvin-Helmholtz instability for both weak and strong magnetic field. It is shown that oblique perturbations propagating at an angle to the velocity vector of the medium play a dominant role in the development of this instability. Moreover, the generation of a large number of stable MHD modes at the plasma boundary can lead to the realization of a turbulent plasma state. The results of the work can be applied in the description of wave processes at the boundary of the geomagnetic tail and in the explanation of the generation of ULF disturbances on the night side of the Earth’s magnetosphere.
Ключові слова: Kelvin-Helmholtz instability, longitudinal and oblique MHD modes, the tail of the Earth’s magnetosphere, waves in a compressible magnetized medium
References: 
1. Burinskaya T. M. (2008). Kelvin-Helmholtz Instability in a Bounded Plasma Flow. Plasma Phys. Reports, 34(11), 936—943.
2. Gossard E. E., Hooke W. H. (1975). Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation. Elsevier Science Ltd., 472 p.

3. Grigoriev Yu. N., Ershov I. V., Zyryanov K. I. (2008). Numerical modeling of Kelvin — Helmholtz waves in a weakly nonequilibrium molecular gas. Computational technol., 13(5), 25—38 (In Russian).

4. Guglielmi A. V., Potapov A. S., Klein B. I. (2010). The combined Rayleigh — Taylor — Kelvin — Helmholtz instability on a magnetopause. Solar-Terrestrial phys., 15, 24—27 (In Russian).
5. Ershkovich A. I., Nusinov A. A., Chernikov A. A. (1972). On the Kelvin — Helmholtz instability in cometary tails of type I. Astron. J., 49, 866—871 (In Russian).

6. Zagorodniy A. G., Cheremnykh О. K. (2014). Introduction to plasma physics. Kyiv: Naukova Dumka.

7. Zelenyi L. M., Veselovskiy I. S. (Ed.). (2008). Cosmic geoheliophysic. Physmatlit (Moscow), 2, 672 p. (In Russian).

8. Zelenyi L. M., Grigorenko E. E., Fedorov A. O. (2004). Spatial-Temporal Ion Structures in the Earth’s Magnetotail: Beamlets as a Result of Nonadiabatic Impulse Acceleration of the Plasma. JETP Lett., 80(10), 663—673.
9. Kremenetsky I. A., Cheremnykh О. K. (2009). Space weather: mechanisms and manifestations. Kyiv: Naukova Dumka. 

10. Ladikov-Roev Yu. P., Cheremnykh О. K. (2010). Mathematical models of continuum. Kyiv: Naukova Dumka. 11. Lamb H. (1932). Hydrodynamics (6th ed.). Cambridge: Univ. Press.

12. Landau L. D. (1944). Stability of tangential discontinuities in a compressible medium. Reprts Acad. Sci. USSR, 44, 339—342.

13. Landau L. D., Lifshits N. M. (1986). Theoretical physics.Vol. VI. Hydrodynamics. M.: Science. 
14. Leonovich A. S., Mazur V. A., Kozlov D. A. (2015). MHD waves in the geomagnetic tail: A Review. Solar-Terrestrial Phys., 1(1), 4—42 (In Russian).
15. Leonovich A. S., Mazur V. A., Senatorov V. N. (1983).Alfven waveguide. JETP, 58(1), 83—85.

16. Mikhailovsky A. B. (1970). Theory of plasma instabilities Vol.1. Homogeneous plasma instabilities. Moscow: Atomizdat (In Russian).

17. Polovin R. V., Demutsky V. P. (1987). The basics of magnetic hydrodynamics. Moscow: Energoatomizdat. 
18. Syrovatsky S. I. (1957). Magnetic fluid dynamics. UFN, 62(3), 247—303 (In Russian).
19. Syrovatsky S. I. (1954). Instability of tangential discontinuities in a compressible medium. JETP, 27, 121—123 (In Russian).
20. Syrovatsky S. I. (1953). On the stability of tangential discontinuities in a magnetohydrodynamic medium. JETP, 24, 622—630 (In Russian).

21. Troitskaya V. A., Guglielmi A. V. (1969). Geomagnetic pulsations and diagnostics of the magnetosphere. UFN, 12, 195—218.
https://doi.org/10.1070/PU1969v012n02ABEH003933
22. Trunev A. P. (2017). Simulation of atmospheric vortex flows on Jupiter and Saturn. Krasnodar: KubGAU (In Russian). 
https://doi.org/10.21515/1990-4665-126-050
23. Whitham G. (1999). Linear and nonlinear waves. Pub. Wiley-Interscience. 
https://doi.org/10.1002/9781118032954
24. Faber T. E. (2001). Hydroaerodynamics. Moscow: Postmarket (In Russian).

25. Friedman A. M. (1990). Modified criterion for the Landau stabilization of the instability of a tangential velocity discontinuity in a compressible medium. UFN, 33(10), 865—867.
https://doi.org/10.1070/PU1990v033n10ABEH002638
26. Shevelev M. M, Burinskaya T. M. (2011). Kelvin–Helmholtz instability of a cylindrical plasma flow with an arbitrary temperature. Plasma Phys. Reprts, 37(12), 1006—1019.
https://doi.org/10.1134/S1063780X11110080
27. Yavorsky B. M., Detlaf A. A. (1985). Handbook of physics. Moscow: Science. 
28. Agapitov A. V., Cheremnykh O. K. (2008). Natural oscillations of the Earth magnetosphere associated with solar wind sudden impulses. Ukr. Phys. J., 53(5), 506—510.

29. Axford W. I. (1964). Viscous interaction between the solar wind and the Earth’s magnetosphere Planet. and Space Sci., 12, 45—51.
https://doi.org/10.1016/0032-0633(64)90067-4
30. Burdo O. S., Cheremnykh O. K., Verkhoglyadova O. P. (2000). Study of ballooning modes in the inner magnetosphere of the Earth. Izv. Akad. Nauk. Fiz., 64 (9), 1896—1900.

31. Burinskaya T. M., Shevelev M. M., Rauch I.-L. (2011). Kelvin — Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field. Plasma Phys. Reprts, 37(1), 43—55.
https://doi.org/10.1134/S1063780X10111029
32. Chandrasekhar S. (1961). Hydrodynamic and hydromagnetic stability. Cambridge: Univ. Press. 

33. Cheremnykh O. K. (2010). Transversally small-scale perturbations in arbitrary plasma configurations with magnetic surfaces. Plasma Phys. and Contr. Fusion., 52(9), 095006.
https://doi.org/10.1088/0741-3335/52/9/095006
34. Cheremnykh O., Cheremnykh S., Kozak L., Kronberg E. (2018). Magnetohydrodynamic waves and the Kelvin-Helmholtz instability at the boundary of plasma mediums. Phys. Plasmas, 25(10), 102-119.
https://doi.org/10.1063/1.5048913.

35. Cheremnykh O. K. Danilova V. V. (2011). Transverse small-scale MHD disturbances in space plasma with magnetic surfaces. Kinematics and Physics of Celestial Bodies,27(2), 98—108.
https://doi.org/10.3103/S0884591311020036
36. Cheremnykh O., Fedun V., Ladikov-Roev Yu., Verth G. (2018). On the stability of incompressible MHD modes in magnetic cylinder with twisted magnetic field and flow.Astrophys. J., 866(2), 86—98.
https://doi.org/10.3847/1538-4357/aadb9f
37. Cheremnykh O. K., Klimushkin D. Y., Kostarev D. V. (2014). On the structure of azimutally small-scale UKF oscillations of hot space plasma in a curved magnetic field. Modes with continuous spectrum. Kinematics and Physics of Celestial Bodies, 30(5), 209—222.
https://doi.org/10.3103/S088459131405002X
38. Dai L., Takahashi K., Lysak R., et al. (2015). Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. J. Geophys.Res., 120, 4748—4762.
https://doi.org/10.1002/2015JA021134
39. Delamere P. A., Wilson R. J., Masters A. (2011). Kelvin — Helmholtz instability at Saturn’s magnetosphere: Hybrid simulations. J. Geophys. Res., 116, A10222 (16 p).
https://doi.org/10.1029/2011JA016724
40. Fejer J. A. (1964). Hydromagnetic stability at fluid velocity discontinuity between compressible fluids. Phys. Fluids, 7(4), 499—503.
https://doi.org/10.1063/1.1711229
41. Foullon C., Farrugia C. I. Fazakerley A. N., et. al. (2008). Evolution of Kelvin — Helmholtz activity on the dusk flank magnetopause. J. Geophys. Res., 113, А11203 (12 р).
https://doi.org/10.1029/2008JA013175
42. Grigorenko E. E., Burinskaya T. M., Shevelev M., et. al. (2010). Large-scale fluctuations of PBSL magnetic flux tubes induced by the field-aligned motion of highly accelerated ions. Ann. Geophys., 28, 1273—1288.
https://doi.org/10.5194/angeo-28-1273-2010
43. Grigorenko E. E., Sauvaud J. A., Zelenyi L. M. (2007). Spatial-Temporal characteristics of ion beamlets in theplasma sheet boundary layer of magnetotail. J. Geophys. Res., 112, A05218.
doi: 10.1029/2006 JA 011986.

44. Helmholtz H. L. F. (1868). On the discontinuous movement of fluids. Mon. Rept. Roy. Prussian Acad. Phil. in Berlin, 28, 215—218.

45. Jokipii J. R., Davis L. (1969). Long-wavelength turbulence and heating of the solar wind. Astrophys. J., 156, 1101—1106.
https://doi.org/10.1086/150037
46. Kelling A. (2009). Alfven waves and their roles in the dynamics of the Earth’s magnetotail: A review. Space Sci. Rev., 142, 73—156.
https://doi.org/10.1007/s11214-008-9463-8
47. Korzhov N. P., Mishin V. V., Tomozov V. M. (1984). On the role of plasma parameters and the Kelvin — Helmholtz instability in a viscous interaction of solar wind streams. Planet and Space. Sci., 32(9), 1169—1178.
https://doi.org/10.1016/0032-0633(84)90142-9
48. Kyoung-Joo Hwang. (2015). Magnetopause waves controlling the dynamics of Earth’s magnetosphere. J. Astron. Space Sci., 32(1), 1—11.
https://doi.org/10.5140/JASS.2015.32.1.1
49. Mishin V. V. (2005). Velocity boundary layers in the distant geotail and Kelvin — Helmholtz instability. Planet. and Space Sci., 53, 157—160.
https://doi.org/10.1016/j.pss.2004.09.040
50. Mishin V. V., Tomozov V. M. (2016). Kelvin — Helmholtz Instability in the Solar Atmosphere, Solar Wind and Geomagnetosphere. Solar Phys., 291(11), 3165—3184.
https://doi.org/10.1007/s11207-016-0891-4
51. Miura A. (1992). Kelvin — Helmholtz instability at the magnetospheric boundary: Dependence on the magnetosheath sonic Mach number. J. Geophys. Res., 97, 10655—10675.
https://doi.org/10.1029/92JA00791
52. Miura A., Pritchett P. L. (1982). Nonlocal stability analysis of MHD Kelvin — Helmholtz instability in a compressible plasma. J. Geophys. Res., 87, 7431—7444.
https://doi.org/10.1029/JA087iA09p07431
53. Parker E. N. (1964). Dynamical properties of stellar coronas and stellar winds. Astrophys. J., 139, 690—709.
https://doi.org/10.1086/147795
54. Thompson W. (1871). Hydrokinetic solution and observations. Phil. Mag., 42, 362—377.
https://doi.org/10.1080/14786447108640585
55. Rankin R., Fenrich F., Tikhonchuk V. T. (2000). Shear Alfven waves on stretched magnetic field lines near midnight in Earth’s magnetosphere. Geophys. Res. Lett., 27, 3265—3268.
https://doi.org/10.1029/2000GL000029
56. Ryutova M., Berger T., Frankz Z., et al. (2010). Observation of plasma instabilities in quiescent prominences. Solar Phys., 267, 75—94.
https://doi.org/10.1007/s11207-010-9638-9
57. Smith B. A., Saderlom L. A., Beeber R., et. al. (1979). The Jupiter system through the eyes of Voyager-1. Science, 204(4396), 951—971.
https://doi.org/10.1126/science.204.4396.951
58. Wolff R. S., Goldstein B. E., Yeates C. M. (1980). The oneset and development of Kelvin — Helmholtz instability at the Venus ionosphere. J. Geophys. Res., 85A(12), 76—97.
https://doi.org/10.1029/JA085iA13p07697
59. Zhang B., Delamere P. A., Ma X., Burkholder B., Wiltberger M., Lyon J. G., Merkiv V. G., Sorathia K. A. (2017). Asymmetric Kelvin — Helmholtz instability at Jupiter’s magnetopause boundary: Implications for corotation-dominated systems. Geophys. Res. Lett., 45, 56—63.