Equipment and methods for the remote sensing of vegetative cover in the optical range

1Kochubei, SM
1Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Косм. наука технол. 2002, 8 ;(2-3):271-275
Язык публикации: Русский
Ключевые слова: дистанционное зондирование Земли
1. Peterson D. L., Aber J. D., Matson P. A., et al. Remote sensing of forest canopy and leaf biochemical contents. Remote Sens. Environ., 24, 85—108 (1988).
2. Bo-Cai Gao and Goetz A. F. H. Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopy from AVIRIS data. Remote Sens. Environ., 52, 155—162 (1995).
3. Wessman C. A., Aber J. D., Peterson D. L., Melillo J. M. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature, 335 (9), 154— 156 (1988).
4. Riggs G. A., Running S. W. Detection of canopy water stress in conifers using the airborne imaging spectrometer. Remote Sens. Environ., 35, 51—68 (1991).
5. Penuelas J., Fiella L, Biel C., et al. The reflectance at the 950-970 nm region as an indicator of plant water status. Int. J. Remote Sens., 14, 1887—1905 (1993).
6. Bostater C., Rebbman J. Temporal measurement and analysis of high resolution spectral signatures of plants and relationships to biophysical characteristics. In: Proc. Int. Symp. Remote Sensing for Agriculture, Forestry, and Natural Resources, 26—28 September 1995, Paris France (1995).
7. Bowman W. D. The relationship between leaf water status, gas exchange and spectral reflectance in cotton leaves. Remote Sens. Environ., 30, 249—255 (1989).
8. Shibayama M., Takahashi W., Morinaga S., Akyama T. Canopy water deficit detection in paddy rice using a high resolution field spectrometer. Remote Sens. Environ., 45, 117—126 (1993).
9. Kondratyev K. Ya., Fedchenko P. P., and Barmina Yu. M. An experience in determining the chlorophyll content in the leaves of plants from colour coordinates. Doklady U.S.S.R. Academy of Sciences, 262 (4), 1022—1024 (1982) [in Russian].
10. Sid'ko A. F., Shevyrnogov A. P. Study of seasonal dependence for spectral brightness of agricultural crops on the chlorophyll content and plant physiological parameters. Issled. Zemli iz Kosmosa, No. 3, 96—105 (1998) [in Russian].
11. Campbell J. W., Esalas W. E. Basis for spectral curvature algorithms in remote sensing of chlorophyll. Appl. Opt., 22 (7), 1084—1090 (1983).
12. Milton N. M., Monat D. A. Remote sensing of vegetation responses to natural and cultural environment condition. Photogram. Eng. And Remote Sens., 55, 1167—1173 (1989).
13. Kochubey S. M., Kobets N. I., Shadchina T. M. Spectral Properties of Plants as a Basis for the Methods of Remote Diagnostic, 136 p. (Naukova dumka, Kiev, 1990) [in Russian].
14. Gitelson A. A., Merzlyak M. N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocas-tanum L. and Acer Platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol., 143, 286—292 (1994).
15. Merzlyak M. N., Gitelson A. A., Chivkunova O. B., Rakitin V. Yu. Non-destructive optical detection of leaf senescence and fruit ripening. Physiol. Plant., 106, 136—141 (1999).
16. Penuelas J., Baret F., Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31 (2), 221—230 (1995).
17. Carter G. A., Cibula W. G., Miller R. L. Narrow-band reflectance imagery compared with thermal imagery for early detection of plant stress. J. Plant Physiol., 148, 515—520 (1996).
18. Carter G. A. Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sens. Environ., 63, 61—72 (1998).
19. Qi J., Chehbouni A., Huete A. R., Kerr Y. H. Modified soil adjusted vegetation index (MSAVI). Remote Sens. Environ., 48, 119— 126 (1994).
20. Chimitdorzhiev T. N., Efremenko V. V. Concerning the use of various vegetation indices in the remote sensing of ecosystems. Issled. Zemli iz Kosmosa, No. 3, 49—56 (1998) [in Russian].
21. Huete A. R., Liu H. Q. An error and sensitivity analysis of the atmospheric and soil correcting variant of the NDVI for the MODIS-EOS. IEEE Trans. Geosci. Remote. Sens., 32 (4), 897—905 (1995).
22. Horler D. N. H., Dockray M., Barber J. The red edge of plant leaf reflection. Int. J. Remote Sens., 4 (2), 273—288 (1983).
23. Ferns D. C., Zara S. J., Barber J. Application of high resolution spectroradiomertry to vegetation. Photogram. Eng. And Remote Sens., 50 (12), 1725—1739 (1984).
24. Boochs F., Kupfer G., Dockter K., Kbhbauch W. Shape of the red edge as vitality indicator for plants. Int. J. Remote Sens., 10, 1741 — 1753 (1990).
25. Buschmann C., Rinderle U., Lichtenthaler H. K. Detection of stress in coniferous forest trees with the VIRAF Spectrometer. IEEE Trans. Geosi. Remote Sens., 29 (1), 96—100 (1991).
26. Vogelmann J. E., Rock B. N., Moss D. M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens., 14 (8), 1563—1575 (1993).
27. Shadchina T. M. Scientific bases of remote monitoring of grain crops state, 219 p. (Phytosociocentre, Kyiv, 2001) [in Ukrainian].
28. Kochubei S. M. Comparison of the information power of multispectral imaging and high-resolution spectroscopy in the remote sounding of vegetation cover. Kosm. nauka tehnol., 5 (2-3), 41—48 (1999) [in Russian].