Розроблення підходів нейропротекції при довготривалих космічних місіях

Пастухов, АО, Крисанова, НВ, Позднякова, НГ, Борисов, АА, Сівко, РВ, Назарова, АГ, Каліновська, ЛМ, Борисова, ТО
Косм. наука технол. 2022, 28 ;(6):52-62
https://doi.org/10.15407/knit2022.06.052
Мова публікації: Українська
Анотація: 
Мета роботи полягала у розробленні стратегії та методології нейропротекції при довготривалих космічних місіях, яка базується на комплексному дослідженні впливу терапевтичної гіпотермії, поєднаної з дією нейроактивних препаратів, на ключові характеристики синаптичної передачі у нервових терміналях головного мозку, що змінюються за дії планетарного пилу та за умов зміненої гравітації. Розвиток нейротоксичності за умов зміненої гравітації може бути зумовлений надлишковим позаклітинним глутаматом, що виникає, як результат реверсного функціонування глутаматних транспортерів. За умов зміни гіпотермії від помірної до глибокої, було продемонстровано поступове зниження транспортер-опосередкованого вивільнення L-[14C]глутамату стимульованого деполяризацією плазматичної мембрани KCl та дисипацією протонного градієнта синаптичних везикул протонофором FCCP. Цей факт свідчить про нейропротекторний ефект, який збільшується за умов зміни гіпотермії від помірної до глибокої. Визначені можливі ризики використання гіпотермії у космічній медицині. Гіпотермія не здатна знизити позаклітинний рівень L-[14C]глутамату та [3Н]ГАМК, що збільшуються за умов впливу карбон-вмісного планетарного пилу. Гіпотермія може призвести до подальшого зниження швидкості накопичення нейромедіаторів за умов присутності карбон-вмісного планетарного пилу та сприяти розвитку нейротоксичності, що є можливим ризиком використання гіпотермії у космічній медицині. У цьому контексті важливим є вибір оптимального індивідуального температурного режиму для кожного астронавту.
Ключові слова: L-[14С]глутамат, [3Н]γ-аміномасляна кислота, гіпотермія, нервові терміналі головного мозку, планетарний пил, синаптосоми
References: 
1. Borisova T. (2018). Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles Front. Physiol. V.9, P. 728.
https://doi.org/10.3389/fphys.2018.00728
2. Borisova T. (2019). Express assessment of neurotoxicity of particles of planetary and interstellar dust npj Microgravity. V.5, № 1, P. 2.
https://doi.org/10.1038/s41526-019-0062-7
3. Borisova T. (2022). Environmental Nanoparticles: Focus on Multipollutant Strategy for Environmental Quality and Health Risk Estimations Biomed. Nanomater. P. 305-321.
 https://doi.org/10.1007/978-3-030-76235-3_11
4. Borisova T.A., Himmelreich N.H. (2005). Centrifuge-induced hypergravity: [3H]GABA and l-[14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters Adv. Sp. Res. V.36, № 7, P. 1340-1345.
https://doi.org/10.1016/j.asr.2005.10.007
5. Borisova T.A., Krisanova N.V. (2008). Presynaptic transporter-mediated release of glutamate evoked by the protonophore FCCP increases under altered gravity conditions Adv. Sp. Res. V.42, № 12, P. 1971-1979.
https://doi.org/10.1016/j.asr.2008.04.012
6. Borisova T., Krisanova N., Himmelreich N. (2004). Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals Adv. Sp. Res. V.33, № 8, P. 1362-1367.
 https://doi.org/10.1016/j.asr.2003.09.039
7. Borisova T., Krisanova N., Sivko R., et al. (2010). Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes Neurochem. Int. V.56, № 3, P. 466-478.
https://doi.org/10.1016/j.neuint.2009.12.006
8. Borisova T., Pozdnyakova N., Dudarenko M., et al. (2021). GABAA receptor agonist cinazepam and its active metabolite 3-hydroxyphenazepam act differently at the presynaptic site Eur. Neuropsychopharmacol. V.45, P. 39-51.
https://doi.org/10.1016/j.euroneuro.2021.03.013
9. Borisova T., Pozdnyakova N., Krisanova N., et al. (2021). Unique features of brain metastases-targeted AGuIX nanoparticles vs their constituents: A focus on glutamate-/GABA-ergic neurotransmission in cortex nerve terminals Food Chem. Toxicol. V.149, P. 112004.
https://doi.org/10.1016/j.fct.2021.112004
10. Borysov A., Pozdnyakova N., Pastukhov A., et al. (2018). Comparative analysis of neurotoxic potential of synthesized, native, and physiological nanoparticles Neuromethods. V.135, P. 203-227.
https://doi.org/10.1007/978-1-4939-7584-6_13/COVER
11. Borysov A., Tarasenko A., Krisanova N., et al. (2020). Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals Environ. Pollut. V.263, P. 114502.
https://doi.org/10.1016/j.envpol.2020.114502
12. Cotman C.W. (1974). Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol. V.31, P. 445-452.
https://doi.org/10.1016/0076-6879(74)31050-6
13. Fukunaga H. (2020). The Effect of Low Temperatures on Environmental Radiation Damage in Living Systems: Does Hypothermia Show Promise for Space Travel? Int. J. Mol. Sci. V.21, № 17, P. 6349.
https://doi.org/10.3390/ijms21176349
14. Gaier J.R. (2005). The Effects of Lunar Dust on EVA Systems During the Apollo Missions.
15. Hupfeld K.E., McGregor H.R., Reuter-Lorenz P.A., et al. (2021). Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity Neurosci. Biobehav. Rev. V.122, P. 176-189.
https://doi.org/10.1016/j.neubiorev.2020.11.017
16. Kammersgaard L.P., Jørgensen H.S., Rungby J.A., et al. (2002). Admission body temperature predicts long-term mortality after acute stroke: the Copenhagen Stroke Study. Stroke. V.33, № 7, P. 1759-62.
https://doi.org/10.1161/01.STR.0000019910.90280.F1
17. Krisanova N., Kasatkina L., Sivko R., et al. (2013). Neurotoxic Potential of Lunar and Martian Dust: Influence on Em, Proton Gradient, Active Transport, and Binding of Glutamate in Rat Brain Nerve Terminals Astrobiology. V.13, № 8, P. 679-692.
https://doi.org/10.1089/ast.2012.0950
18. Krisanova N., Pozdnyakova N., Pastukhov A., et al. (2019). Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters Food Chem. Toxicol. V.123,
https://doi.org/10.1016/j.fct.2018.10.054
19. Krisanova N. V., Trikash I.O., Borisova T.A. (2009). Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release Neurochem. Int. V.55, № 8, P. 724-731.
https://doi.org/10.1016/j.neuint.2009.07.003
20. Lam C.W., Scully R.R., Zhang Y., et al. (2013). Toxicity of lunar dust assessed in inhalation-exposed rats Inhal. Toxicol. V.25, № 12, P. 661-678.
https://doi.org/10.3109/08958378.2013.833660
21. Larson E., Howlett B., Jagendorf A. (1986). Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem. V.155, № 2, P. 243-248.
https://doi.org/10.1016/0003-2697(86)90432-X
22. Latch J.N., Hamilton R.F., Holian A., et al. (2008). Toxicity of lunar and martian dust simulants to alveolar macrophages isolated from human volunteers Inhal. Toxicol. V.20, № 2, P. 157-165.
https://doi.org/10.1080/08958370701821219
23. Mrozek S., Vardon F., Geeraerts T. (2012). Brain temperature: Physiology and pathophysiology after brain injury Anesthesiol. Res. Pract. V.2012, P. 989487.
https://doi.org/10.1155/2012/989487
24. Nordeen C.A., Martin S.L. (2019). Engineering Human Stasis for Long-Duration Spaceflight Physiology. V.34, № 2, P. 101-111.
https://doi.org/10.1152/physiol.00046.2018
25. Oberdörster G., Elder A., Rinderknecht A. (2009). Nanoparticles and the brain: cause for concern? J. Nanosci. Nanotechnol. V.9, № 8, P. 4996-5007.
https://doi.org/10.1166/jnn.2009.GR02
26. Oberdörster G., Oberdörster E., Oberdörster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. V.113, № 7, P. 823-39.
https://doi.org/10.1289/ehp.7339
27. Paliienko K., Pastukhov A., Babič M., et al. (2020). Transient coating of γ-Fe 2 O 3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals Beilstein J. Nanotechnol. V.11, № 1, P. 1381-1393.
https://doi.org/10.3762/bjnano.11.122
28. Pastukhov A., Borisova T. (2018). Levetiracetam-mediated improvement of decreased NMDA-induced glutamate release from nerve terminals during hypothermia Brain Res. V.1699,
https://doi.org/10.1016/j.brainres.2018.06.032
29. Pastukhov A., Borisova T. (2018). Combined Application of Glutamate Transporter Inhibitors and Hypothermia Discriminates Principal Constituent Processes Involved in Glutamate Homo- and Heteroexchange in Brain Nerve Terminals Ther. Hypothermia Temp. Manag. V.8, № 3, P. 143-149.
 https://doi.org/10.1089/ther.2017.0047
30. Pastukhov A., Krisanova N., Pyrshev K., et al. (2020). Dual benefit of combined neuroprotection: Cholesterol depletion restores membrane microviscosity but not lipid order and enhances neuroprotective action of hypothermia in rat cortex nerve terminals Biochim. Biophys. Acta - Biomembr. V.1862, № 9, P. 183362.
https://doi.org/10.1016/j.bbamem.2020.183362
31. Patsula V., Borisova T., Kostiv U., et al. (2019). Effect of Fe3O4 @ SiO2 Nanoparticle Diameter on Glutamate Transport in Brain Nerve Terminals Nanosci. Nanotechnol. Lett. V.11, № 1, P. 61-69.
https://doi.org/10.1166/nnl.2019.2853
32. Pozdnyakova N., Borisova T. (2018). Evaluation of the neurotoxicity of the inorganic analogue of Martian dust enriched with the new carbon nanoparticles Sp. Res. Ukr. 2016 - 2018. P. 62-65.
33. Pozdnyakova N., Dudarenko M., Borisova T. (2019). Age-Dependency of Levetiracetam Effects on Exocytotic GABA Release from Nerve Terminals in the Hippocampus and Cortex in Norm and After Perinatal Hypoxia Cell. Mol. Neurobiol. V.39, № 5, P. 701-714.
https://doi.org/10.1007/s10571-019-00676-6
34. Pozdnyakova N.G., Pastukhov A.O., Dudarenko M.V., et al. (2018). Enrichment of the inorganic analogue of martian dust with the novel carbon nanoparticles obtained during combustion of carbohydrates and assesment of its meurotoxicity Space Sci. Technol. V.24, № 2, P. 60-71.
https://doi.org/10.15407/knit2018.02.060
35. Pozdnyakova N., Pastukhov A., Dudarenko M., et al. (2017). Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity Microgravity Sci. Technol.
https://doi.org/10.1007/s12217-016-9533-6
36. Scully R.R., Lam C.W., James J.T. (2013). Estimating safe human exposure levels for lunar dust using benchmark dose modeling of data from inhalation studies in rats Inhal. Toxicol. V.25, № 14, P. 785-793.
https://doi.org/10.3109/08958378.2013.849315
37. Tarasenko A.S., Sivko R. V., Krisanova N. V., et al. (2010). Cholesterol depletion from the plasma membrane impairs proton and glutamate storage in synaptic vesicles of nerve terminals J. Mol. Neurosci. V.41, № 3, P. 358-367.
https://doi.org/10.1007/s12031-010-9351-z