Вилучення водних об'єктів за допомогою математичної морфології
Беналі, А |
Косм. наука технол. 2024, 30 ;(4):48-57 |
https://doi.org/10.15407/knit2024.04.048 |
Мова публікації: Англійська |
Анотація: Управління водними ресурсами є життєво важливим для збереження світових екосистем. Традиційні методи ототожнення водних об'єктів на зображеннях залишаються дуже обмеженими через складність реалізації. Це призводить до зниження точності ідентифікації. Наша основна мета - покращити виявлення водних об'єктів. Ми протестували точність нашого методу на наборі даних Sentinel-2, який містить зображення з різними рівнями складності та неоднорідними структурами, такими як тіні, дороги, будівлі тощо.
У цій статті представлено оригінальний метод, який реалізує ідею розділення трикомпонентних матриць RGB-зображень і подальшої обробки лише зеленої матриці, оскільки вона містить усі водні об'єкти з високою точністю. Наш метод базується в основному на математичній морфології.
По-перше, ми пропонуємо простий і швидкий бінарний алгоритм для виявлення максимальної кількості водойм, що існують на зображеннях. Цей крок було виконано за допомогою перетворення "влучив або не влучив" (Hit-or-Miss Transform). На другому кроці для уточнення результату сегментації використовується перетворення Top-Hat для визначення максимальної кількості водойм.
Порівнюючи наш метод з кількома методами, що використовуються в даний час, ми помітили, що наш метод покращує якість сегментації і дає відмінні результати, які перевищують 95% для всіх метрик, що використовуються для розрахунку якості класифікації в галузі дистанційного зондування. Похибка, отримана за допомогою нашого методу, становить менше 1%. Можна стверджувати, що наш метод дуже добре підходить для виявлення водойм порівняно з усіма існуючими методами.
|
Ключові слова: RGB, водойми, дистанційне зондування, класифікація., математична морфологія |
1. Arash Modaresi Rad, Jason Kreitler, Mojtaba Sadegh (2021). Augmented Normalized Difference Water Index for Improved
Surface Water Monitoring. Environmental Modelling & Software, 140, 105030-105076.
2. Billson Joshua, MD Samiul Islam, Xinyao Sun, and Irene Cheng (2023). Water Body Extraction from Sentinel-2 Imagery with Deep Convolutional Networks and Pixelwise Category Transplantation. Remote Sensing, 15, No. 5, 1253-1270.
https://doi.org/10.3390/rs15051253
3. Bingxin Bai, Yumin Tan, Gennadii Donchyts, Arjen Haag, Bo Xu, Ge Chen, Albrecht H. Weerts (2023). Naive Bayes
classification-based surface water gap-filling from partially contaminated optical remote sensing image. J. Hydrology, 616,
128791-123803.
4. Duan Yueming, Wenyi Zhang, Peng Huang, Guojin He, and Hongxiang Guo (2021). A New Lightweight Convolutional
Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images. Remote Sensing, 13,
No. 22, 4576-4598.
https://doi.org/10.3390/rs13224576
5. George Bichu, Sajith Variyar V. V, Sowmya V. and Sivanpillai Ramesh (2023). Performance Improvement of Water Body
Segmentation by DeeplabV3+Using Two Dimensional Variational Mode Decomposition. 10th Int. Conf. on Signal Processing
and Integrated Networks (SPIN), Noida, India, 603-608.
https://doi.org/10.1109/SPIN57001.2023.10116311
6. Gujrati Ashwin, Jha Vibhuti Bhushan, Nidamanuri, Rama Rao, Singh. R. P. (2023). Satellite-based Optical Water Type
Classification of Inland Waters Bodies of India. Int. Conf. Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 1-4.
https://doi.org/10.1109/MIGARS57353.2023.10064493
7. Guru Prasad M. Agarwal Jyoti, Christa Sharon, Aditya Pai H., Kumar M. A. and Kukreti Anand, Anurag Kukreti (2023). An
Improved Water Body Segmentation from Satellite Images using MSAA-Net. Int. Conf. Machine Intelligence for GeoAnalytics
and Remote Sensing (MIGARS), Hyderabad, India, 1-4.
https://doi.org/10.1109/MIGARS57353.2023.10064508
8. Hongye Cao, Ling Han, Liangzhi Li (2022). Changes in extent of open-surface water bodies in China's Yellow River Basin
(2000-2020) using Google Earth Engine cloud platform. Anthropocene, 39, 100346-100359.
9. Jagruth K., V. Manikandan M., and Kumar Ravi Kant (2021). Water Body Identification from the Satellite Images using
Color Component Analysis with Morphological Operations. 12th ICCCNT (2021 - IIT - Kharagpur Kharagpur, India).
10. Jikang Wan and Bin Yong (2023). Automatic extraction of surface water based on lightweight convolutional neural network.
Ecotoxicology and Environmental Safety, 256, 114843-114854.
11. Junjie Li, Yizhuo Meng, Yuanxi Li, Qian Cui, Xining Yang, Chongxin Tao, Zhe Wang, Linyi Li and Wen Zhang (2022).
Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep
learning. J. Hydrology, 612, 128202-128216.
12. Kalaivani Kathirvelu, Asnath Victy Phamila Yesudhas, Sakkaravarthi Ramanathan (2023). Spectral unmixing based random
forest classifier for detecting surface water changes in multitemporal pansharpened Landsat image. Expert Systems With Applications, 224, 120072-120086.
https://doi.org/10.1016/j.eswa.2023.120072
13. Kale Suhas, Gawali Bharti, Shafiyoddin Sayyad (2021). Extraction of Water Bodies in Godawari Basin from Satellite Images. IEEE Int. India Geoscience and Remote Sensing Symp. (InGARSS), Ahmedabad, India, 141-144.
https://doi.org/10.1109/InGARSS51564.2021.9792088
14. Lifu Chen, Xingmin Cai, Jin Xing, Zhenhong Li, Wu Zhu, Zhihui Yuan, Zhenhuan Fang (2023). Towards transparent deep
learning for surface water detection from SAR imagery. Int. J. Appl. Earth Observation and Geoinform., 118, 103287-103302.
15. Linrong Li, Hongjun Su, Qian Du, Taixia Wu (2020). A novel surface water index using local background information for
long term and large-scale Landsat images. ISPRS J. Photogrammetry and Remote Sensing, 172, 59-78.
https://doi.org/10.1016/j.isprsjprs.2020.12.003
16. Liumeng Chen, Yongchao Liu, Jialin Li, Peng Tian, Haitao Zhang (2023). Surface water changes in China's Yangtze River
Delta over the past forty years. Sustainable Cities and Society, 91, 104458-104474.
17. Liu Qingwei, Tian Yugang, Zhang Lihao, and Chen Bo (2022). Urban Surface Water Mapping from VHR Images Based
on Superpixel Segmentation and Target Detection. IEEE J. Selected Topics in Appl. Earth Observ. and Remote Sensing, 15, 5339-5356.
https://doi.org/10.1109/JSTARS.2022.3181720
18. Luo Yuanjiang, Feng Ao, Li Hongxiang, Li Danyang, Xuan Wu, Liao Jie, Zhang Chengwu, Zheng Xingqiang, Pu Haibo
(2022). New deep learning method for efficient extraction of small water from remote sensing images. PLoS ONE, 17(8), e0272317.
https://doi.org/10.1371/journal.pone.0272317
19. Nguyen Thu-Hang, Filipe Aires (2023). A global topography- and hydrography-based floodability index for the downscaling, analysis, and data-fusion of surface water. J. Hydrology, 620, 129406-129421.
https://doi.org/10.1016/j.jhydrol.2023.129406
20. Parajuli Janak, Ruben Fernandez-Beltran, Jian Kang and Filiberto Pla (2022). Attentional Dense Convolutional Neural
Network for Water Body Extraction From Sentinel-2 Images. IEEE J. Selected Topics in Appl. Earth Observ. and Remote
Sensing, 15, 6804-6816.
https://doi.org/10.1109/JSTARS.2022.3198497
21. Sharma Deepa, Trapti Sharma and Jyoti Singhai (2021). Extraction of Water Bodies from Visible Color Satellite Images
Using PCA Feature Map. IEEE Int. India Geosci. and Remote Sensing Symp. (InGARSS), Ahmedabad, India, 1-4.
https://doi.org/10.1109/InGARSS51564.2021.9791857
22. Suhail Ahamed T., Nalini N. and Rimlon Shibi S. (2023). Edge Detection of Satellite Image for Water Body Identification
using Marr -Hildreth Algorithm and comparing with Canny edge Detector Algorithm to Enhance Accuracy and Contrast. Eighth Int. Conf. on Sci. Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 1-5.
doi: 10.1109/ICONSTEM56934.2023.10142577
23. Sunandini Gosula, Sivanpillani Ramesh, Sowmya V. and Variyar Sajith V. V. (2023). Significance of Atrous Spatial Pyramid
Pooling (ASPP) in Deeplabv3+ for Water Body Segmentation. 10th Int. Conf. on Signal Processing and Integrated Networks
(SPIN), Noida, India, 744-749.
https://doi.org/10.1109/SPIN57001.2023.10116882
24. Wenxue Xing, Bin Guo, Yingwu Sheng, Xingchao Yang, Min Ji, Ying Xu (2022). Tracing surface water change from 1990 to
2020 in China's Shandong Province using Landsat series images. Ecological Indicators, 140, 108993-109001.
https://doi.org/10.1016/j.ecolind.2022.108993
25. Xue Weibao, Hui Yang, Yanlan Wu, Peng Kong, Hao Xu, Penghai Wu, and Xiaoshuang Ma. (2021). Water Body Automated
Extraction in Polarization SAR Images With Dense-Coordinate-Feature-Concatenate Network. IEEE J. Selected Topics in
Appl. Earth Observ. and Remote Sensing, 14, 12073-12087.
https://doi.org/10.1109/JSTARS.2021.3129182
26. Xu Nan, Yue Ma, Wenhao Zhang, and Xiao Hua Wang (2021). Surface-Water-Level Changes During 2003-2019 in Australia Revealed by ICESat/ICESat-2 Altimetry and Landsat Imagery. IEEE Geosci. and Remote Sensing Lett., 18, No. 7,
https://doi.org/10.1109/LGRS.2020.2996769
27. Yamina Benkesmia, Moulay Idriss Hassani, and Cherif Kessar (2023). Variation of surface water extent in the great Sebkha
of Oran (NW of Algeria), using Landsat data 1987-2019: Interaction of natural factors and anthropogenic impacts. Remote
Sensing Appl.: Society and Environment, 30, 100953-100972.
28. Youzhi Li, Zhihua Mao, Zhenge Qiu, Kuifeng Luan, Bangyi Tao, Haiqing Huang, and Chunling Zhang (2023). Algorithm
for Detection of Water Surface Height in UAV-Borne Photon-Counting LiDAR. IEEE Geosci. and Remote Sensing Lett., 20,
6500605-6500609.
29. Yuanhui Zhu, Soe W. Myint, Danica Schaffer-Smith, David J. Sauchyn, Xiaoyong Xu, Joseph M. Piwowar, and Yubin Li
(2022). Examining ground and surface water changes in response to environmental variables, land use dynamics, and socioeconomic changes in Canada. J. Environmental Management, 322, 115875-115884.
https://doi.org/10.1016/j.jenvman.2022.115875
30. Zhang Zhixin, Da Liu, Zhe Liu, Yanjun Qiao, Changan Zheng, and Yong Gan (2021). Deep learning based methods for
water body extraction and flooding evolution analysis based on Sentinel-1 images. 7th Int. Conf. on Hydraulic and Civil
Engineering & Smart Water Conservancy and Intelligent Disaster Reduction Forum (ICHCE & SWIDR), Nanjing, China, 191-195.
https://doi.org/10.1109/ICHCESWIDR54323.2021.9656266
31. Rishikeshan C. A., Ramesh H. (2017). A novel mathematical morphology based algorithm for shoreline extraction from
satellite images. Geo-Spatial Inform. Sci., 20(4), 345-352. https://doi.org/10.1080/10095020.2017.1403089
https://doi.org/10.1080/10095020.2017.1403089