АТМОСФЕРНІ ГРАВІТАЦІЙНІ ХВИЛІ СЕРЕД ФІЗИЧН ИХ МЕХАНІЗМІВ СЕЙСМОІОНОСФЕРНОГО ЗВ’ЯЗКУ

1Лізунов, ГВ, Скороход, ТВ, 2Корепанов, ВЄ
1Інститут космічних досліджень Нацiональної академiї наук України та Державного космiчного агентства України, Київ
2Львівський центр Інституту космічних досліджень Національної академії наук України та Державного космічного агентства України, Львів
Косм. наука технол. 2020, 26 ;(3):55-80
https://doi.org/10.15407/knit2020.03.055
Мова публікації: Російська
Анотація: 
У роботі привертається увага наукової спільноти до атмосферних гравітаційних хвиль (ГХ) як найбільш ймовірного
механізму перенесення енергії від приземних шарів атмосфери на космічні висоти та охарактеризувати сформова-
ний таким чином канал сейсмоіоносферного зв’язку. Обговорюються кілька основних механізмів впливу на іоносферу знизу: поширення низькочастотних електромагнітних випромінювань; замикання через іоносферу електричних струмів; проникнення хвиль нейтральної атмосфери.
         Основна частина роботи присвячена аналізу теоретичних та експериментальних відомостей про ГХ. Виписані прості аналітичні вирази, що дозволяють розрахувати параметри ГХ в конкретних експериментальних умовах. Аналізуються теоретичні та експериментальні дані, що стосуються власне ГХ. Приведено прості аналітичні вирази для розрахунку параметрів ГХ у конкретних експериментальних умовах. Аналізуються специфіка дисперсійних властивостей ГХ та особливостей їхнього поширення, досліджено процеси амплітудного підсилення та дисипації ГХ з висотою, описано механізм генерації електромагнітних збурень при перетині ГХ динамо-шару та визначено кількісні характеристики магнітодинамічних збурень іоносфери. В експериментальній частині аналізується глобальний розподіл ГХ на іоносферних висотах за даними супутника DE-2 та виконано статистичний аналіз зв’язку ГХ із землетрусами. Результати DE-2 підсилено порівнянням з раніше опублікованими даними місії DEMETER.
Ключові слова: іоносфера, атмосферна гравітаційна хвиля, землетрус, сейсмоіоносферний зв’язок, термосфера
References: 
1. Bidlingmaer E. R., Pogoreltsev A. I. (1992). Numerical simulation of the transformation of acoustic-gravity waves in temperature and viscous waves in the thermosphere. Proceedings of the Academy of Sciences of the USSR, Atmos. and Ocean Phys, 28, № 1, 64—73 [in Russian].
2. Gossard E., Hooke W. (1975). Waves in the atmosphere. Elsevier scientific Publishing Company.
3. Gokhberg M. B, Pilipenko V. A., Pokhotelov O. A. (1983). Satellite observations of electromagnetic radiation over the epicenter area of the impending earthquake. Rep. Acad. Sci. USSR, 268(1), 56—58 [in Russian].
4. Grigoriev G. I. (1999). Acoustic-gravity waves in the Earth atmosphere (Review). University News Radio Phys., 42, № 1, 1—23 [in Russian].
5. Denisenko V. V., Pomozov E. V. (2010). Penetration of the electric field from the surface layer of the atmosphere into the ionosphere. Solar-terr. phys., № 16, 70—75 [in Russian].
6. Lighthill J. (1978). Waves in fluids. (2nd Editi.). Cambridge Mathematical Library.
7. Larkina V. I., Nalyvayko A. V., Gershenzon N. I., Liperovsky V. A., Gokhberg M. B., Shalimov S. L. (1983). Observations on the Interkosmos-19 satellite of VLF emissions associated with seismic activity. Geomagnetism and aeronomy, 23(5), 842—846 [in Russian].
8. Lizunov G. V., Leontyev A. Yu. (2014). Spectral ranges of AGV in the atmosphere of the earth. Geomagnetism and aeronomy, 54(6), 834—841 [in Russian].
9. Lizunov G. V., Skorokhod T. V. (2018). On the selection of wave disturbances against the background of trends in satellite
observations of the thermosphere. Space sci. and technol., 24, № 6, 57—68 [in Russian].
10. Mareev E. A. (2010). Achievements and prospects of research of the global electrical circuit. Successes phys. sci., 180(5), 527—534 [in Russian].
11. Marov M. Ya., Kolesnichenko A. V. (1987). Introduction to planetary aeronomy. M.: Nauka.
12. Pulinets S. A., Uzunov D. P., Karelin A. V., Davidenko D. V. (2015). Physical basis of the generation of short-term earthquake precursors. A complex model of geophysical processes in the lithosphere — atmosphere — ionosphere — magnetosphere system initiated by ionization. Geomagnetism and aeronomy, 55, № 4, 1—19 [in Russian].
13. Rishbeth H., Garriott O. K. (1969). Introduction to ionospheric physics. Inter. Geophys. 14. 331 p.
14. Skorokhod T. V. (2018). Internal gravity waves in the thermosphere according to direct satellite measurements. Thesis for scientific degree of Candidate of physical and mathematical sciences. Kyiv: Space Research Institute of NAS of Ukraine and SSA of Ukraine [in Ukrainian].
15. Skorokhod T. V., Lizunov G. V. (2012). Localized packets of acoustic-gravity waves in the ionosphere. Geomagnetism and aeronomy, 52, № 1, 93—98 [in Russian].
16. Fedorenko A. K. (2009). Characteristics of atmospheric gravity characteristics in polar regions on the basis of mass spectrometric satellite spectra. Radio Phys. and Radio Astron., 14, № 3, 254—265 [in Ukrainian].
17. Fedorenko A. K. (2011). Propagation directions of acoustic-gravity waves above the Earth polar caps. Space sci. and technol., 17 (3), 254—265 [in Russian].
18. Frenkel Ya. I. (2007). Theory of the phenomenon of atmospheric electricity. (2nd Edition, rev.). M.: KomKniga [in Russian].
19. Chernogor L. F. (2014). Physics of powerful radio emission in geocosmos: monograph. Kh.: KhNU named V. N. Karazin. [in Russian].
20. Chernogor L. F. (2019). The possibility of generating quasi-periodic magnetic earthquake precursors. Geomagnetism and aeronomy, 59, № 3, 1—9 [in Russian].
21. Yampolsky Yu. M., Zalizovsky A. V., Litvinenko L. N., Lizunov G. V., Groves K., Moldvin M. (2004). Variations of the magnetic field in the Antarctic and the conjugate region (New England), stimulated by cyclonic activity. Radio Phys. and Radio Astron., 9, № 2, 130—151 [in Russian].
22. Astafyeva E. I., Afraimovich E. L. (2006). Long distance travelling ionospheric disturbances caused by the great Sumatra’ Andaman earthquake on 26 December 2004. Earth and Planets Space, 58 (8), 1025—1031.
23. Bliokh P. (1999). Variations of electric fields and currents in the lower ionosphere produced by condactivity growth of the air above the future earthquake center. Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. M. Hayakawa (ed.). TERRAPUB, Tokyo, 829—838.
24. Bullough K., Kaiser R. Strangeways, H. J. (1985). Unintentional man-made modification effects in the magnetosphere. J. Atmos. and Terr. Phys., 47, 1211—1223.
25. Ding F., Wan W., Yuan H. (2003). The influence of b ackground winds and attenuation on the propagation of the atmospheric gravity waves. J. Atmos. and Solar-Terr. Phys., 65, 857—869.
26. Dudis J. J., Reber C. A. (1976). Composition effects in thermospheric gravity waves. Geophys. Res. Lett., 3, № 12, 727—730.
27. Dudkin F., Korepanov V., Dudkin D., Pilipenko V., Pronenko V., Klimov S. (2015). Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth’s ionosphere in frequency range 1—60 Hz. Geophys. Res. Lett. 42.
doi:10.1002/2015GL064595.
28. Ferencz Cs., Lizunov G., and POPDAT team. (2014). Ionosphere Waves Service (IWS) — A problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project. J. Space Weather Space Clim. 4, № A17. URL:
http://dx.doi.org/10.1051/swsc/2014013 (дата звернення: 24.06.2019).
29. Forbes J. M. (2007). Dynamics of the thermosphere. J. Meteor. Soc. Jap., 85B, 193—213.
30. Francis S. H. (1975). Global propagation of atmospheric gravity waves: a review. J. Atmos. and Terr. Phys., 37, 1011—1054.
31. Fritts D. C., Lund T. X. (2011). Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling. Aeronomy of the Earth’s Atmosphere and Ionosphere, IAGA Special Sopron Book Series. 2, 109—130.
32. Gokhberg M. B., Nekrasov A. K., Shalimov S. L. (1994). A new approach to the problem of lithosphere-ionosphere coupling before the earthquake. Electromagnetic phenomena related to earthquake prediction. M. Hayakawa and Y. Fujinawa (eds). TERRAPUB, Tokyo, 619—626.
33. Gross S. H., Reber C. A., Huang F. T. (1984). Large-scale waves in the thermosphere observed by the AE-C satellite. Trans. Geosci. and Remote Sens., GE-22(4), 340—351.
34. Hedin A. E., Mayr H. G. (1987). Characteristics of wavelike fluctuations in dynamics explorer neutral composition data. J. Geophys. Res., 92, № A10, 11,159—11,172.
35. Hines C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 1441—1481.
36. Hines C.O. (1974). The upper atmosphere in motion. Washington, D.C.: American Geophysical Union. 37. Hocke K., Schlegel K. (1996). A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982—1995. Ann. Geophys., 14, 917—940.
38. Holzworth R. H. (1995). Quasistatic Electromagnetic Phenomena in the Atmosphere and Ionosphere (Ed. H. Volland). CRC Handbook on Atmospherics, BocaRaton, FL: CRC press, 235—266.
39. Hooke W. H. (1968). Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. and Terr. Phys.,
30, 795—829.
40. Hooke W. H. (1970). The ionospheric response to internal gravity waves. 1. The F2 region response. J. Geophys. Res., 75, 5535—5544.
41. Hooke W. H. (1970). Ionospheric response to internal gravity waves. 2. Lower F region response. J. Geophys Res., 75, 7229—7238.
42. Hooke W. H. (1970). Ionospheric response to internal gravity waves. 3. Changes in the densities of the different ion species. J. Geophys. Res., 75, 7239—7243.
43. Innis J. L., Conde M. (2002). Characterization of acoustic—gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data. J. Geophys. Res., 107, № A12, 1418—1439.
doi:10.1029/2002JA009370.
44. Johnson F. S., Hanson W. B., Hodges R. R., Coley W. R., Carignan G. R., Spencer N. W. (1995). Gravity waves near 300 km over the polar caps. J. Geophys. Res., 100, 23,993—24,002.
45. Kato S. (1980). Dynamics of the upper atmosphere. Developments of the Earth and Planetary Sciences. Tokyo: Center for Acad. Publ. Japan.
46. Kato S. (2007). Thermosphere. Handbook of the Solar-Terrestrial Environment. Y. Kamide and A. C.-L. Chian (eds). Springer-Verlag Berlin Heidelberg.
doi: 10.1007/b104478.
47. Kelley M. C. (1989). The Earth’s Ionosphere. Plasma Physics and Electrodynamics. Academic Press. Inc. Inter. Geophys. Ser., 43.
48. Kim V. P., Hegai V. V. (1999). A possible presage of strong earthquakes in the night-time mid-latitude F2 region ionosphere. Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. M. Hayakawa (ed). TERRAPUB, Tokyo.
49. Kim V. P., Liu J.Y., Hegai V. V. (2012). Modelling the pre-earthquake electrostatic effect on the F region ionosphere. Adv. in Space Res., 50, 1524—1533.
50. Korepanov V., Hayakawa M., Yampolski Yu., Lizunov G. (2009). AGW as seismo-ionospheric coupling response. Phys. Chem. of the Earth, 34, 485—495.
51. Li M., Parrot M. (2013). Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res., 118, № 6, 3731—3739.
doi:10.1002/jgra.50313.
52. Lizunov G., Skorokhod T., Hayakawa M., Korepanov V. (2020). Formation of Ionospheric Precursors of Earthquakes — Probable Mechanism and Its Substantiation. Open J. Earthquake Res., 9, 142—169.
doi: 10.4236/ojer.2020.92009.
53. Makhlouf U., Dewan E., Isler J. R., Tuan T. F. (1990). On the importance of the purely gravitationally induced density, pressure and temperature variations in gravity waves: Their application to airglow observations. J. Geophys. Res., 95, 4103—4111.
54. Mareev E. A., Iudin D. I., Molchanov O. A. (2002). Mosaic source of internal gravity waves associated with seismic activity. Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. M. Hayakawa and O. A. Molchanov (eds). TERRAPUB, Tokyo.
55. Nakamura T., Korepanov V., Kasahara Y., Hobara Y., Hayakawa M. (2013). An evidence on the lithosphere-ionosphere coupling in terms of atmospheric gravity waves on the basis of a combined analysis of surface pressure, ionospheric perturbations and ground-based ULF variations. J. Atmos. Elec., 33, № 1, 53—68.
56. Nickolaenko A. P., Hayakawa M. (1995). Heating of the Lower Ionosphere Electrons by Electromagnetic Radiation of Lightning Discharges. Geophys. Res. Lett., 22, № 22, 3015—3018.
57. Nykiel G., Zanimonskiy Y. M., Yampolski Y. M., Figurski M. (2017). Efficient usage of dense GNSS networks in Central Europe for the visualization and investigation of ionospheric TEC variations. Sensors, 17, № 10, 2298.
58. Parrot M. (1990). World map of ELF/VLF emissions as observed by low-orbiting satellite. Ann. Geophys., 8, 135—145.
59. Parrot M., Zaslavski Y. (1996). Physical mechanisms of manmade influences on the magnetosphere. Surv. in Geophys., 17, № 1, 67—100.
60. Pogoreltsev A. I. (1996). Production of electromagnetic field disturbances due to the interaction between acoustic gravity waves and the ionospheric plasma. J. Atmos. and Terr. Phys., 58, № 10, 1125—1141.
61. Potter W. E., Kayser D. C., Mauersberger K. (1976). Direct measurements of neutral wave characteristics in the thermosphere. J. Geophys. Res., 81, № 28, 5002—5012.
62. Pulinets S. A., Boyarchuk K. A., Hegai V. V., Kim V. P., Lomonosov A. M. (2000). Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv. Space Res., 26, № 8, 1209—1218.
63. Rishbeth H. (2006). Ionoquakes: earthquake precursors in the ionosphere. Eos. 8 August 97, № 2.
64. Roble R. G. (1977). The thermosphere. The Upper Atmosphere and Magnetosphere. Washington, D.C.: Nat. Acad. Sci., 57—71.
65. Rolland L. M., Lognonn´e P., Astafyeva E., Kherani E. A., Kobayashi N., Mann M., Munekane H. (2011). The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63, № 7, 853—857.
66. Rothkaehl H., Parrot M. (2005). Electromagnetic emissions detected in the topside ionosphere related to the human activity. J. Atmos. and Solar-Terr. Phys., 67, № 8-9, 821—828.
67. Row R. V., Mentzoni M. H. (1972). On D-region Electron Heating by a Low-Frequency Terrestrial Line Current With Ground Return. Radio Sci., 7, № 11, 1061—1066.
68. Siingh D., Singh R. P., Kamra A. K., Gupta P. N., Singh R., Gopalakrishnan V., Singh A. K. (2005). Review of electromagnetic coupling between the Earth’s atmosphere and the space environment. J. Atmos. and Solar-Terr. Phys., 67, 637—658.
69. Simões F., Pfaff R., Berthelier J.-J., Klenzing J. (2011). A review of low frequency Electromagnetic wave phenomena related to tropospheric-ionospheric coupling mechanisms. Space Sci. Revs, 168, 1—43.
70. Tronin A. A. (1999). Satellite thermal survey application for earthquake prediction. In: Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. M. Hayakawa (ed.). TERRAPUB, Tokyo.
71. Tronin A. A. (2002). Atmosphere-lithosphere coupling. Thermal anomalies on the Earth surface in seismic processes. In: Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, M. Hayakawa and O. A. Molchanov (eds), TERRAPUB, Tokyo.
72. Vadas S. L., Fritts D. C. (2005). Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J. Geophys. Res., 110, D15103. doi:10.1029/2004JD005574.
73. Vadas S. L., Yue J., She Ch., Stamus P. A., Liu A. Z. (2009). A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004. J. Geophys. Res., 114, D06103.
doi: 10.1029/2008JD010753.
74. Walterscheid R. L., Hickey M. P. (2011). Group velocity and energy flux in the thermosphere: Limits on the validity of group velocity in a viscous atmosphere. J. Geophys. Res., 116, D12101, 1—12.
doi:10.1029/2010JD014987.
75. Yang S.-S., Asano T., Hayakawa M. (2019). Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res.: Space Phys., 124. URL: https://doi.org/10.1029/2018JA026002 (дата звернення: 24.06.2019).
76. Yeh K. C., Liu C. H. (1974). Acoustic-gravity waves in upper atmosphere. Revs Geophys. and Space Phys., 12, № 2, 193—216.