Opposition effect in the brightness of celestial bodies as a diagnostic factor
Heading:
1Shkuratov, Yu.G, 2Kreslavskiy, MA, 2Ovcharenko, AA, 3Muinonen, K, 4Piironen, J, 5Karttunen, H 1Institute of Astronomy of V. N. Karazin National University of Kharkiv, Kharkiv, Ukraine; Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine 2Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine 3Observatory of the University of Helsinki, Helsinki, Finland; Astronomical Observatory of the Uppsala University, Uppsala, Sweden 4Astronomical Observatory of the Uppsala University, Sweden; Science Center Institute of Space Research, Ispra, Italy 5Tuorla observatory, Finland |
Kosm. nauka tehnol. 1998, 4 ;(1):54–59 |
https://doi.org/10.15407/knit1998.01.054 |
Publication Language: Russian |
Abstract: Results of studies of the lunar opposition effect from the Clementine data are presented. The amplitude of the effect is shown to be 10 % in the phase angle range 0-1 degrees. Some leveling down of phase curves at phase angles < 0.5 degree is observed owing to a finite angular size of the Sun. The opposition effect of natural show surfaces has also been studied. A prominent brightness spike is found only for surfaces was studied, and dirty snow samples were found to have a distinct peak and phase angles from 0.2 to 5.0 degrees. Optical characteristics of structure analogs of planetary regoliths were measured by a laboratory photometer-polarimeter at phase angles 0.2-3.5 degrees. It is shown that: (1) the width of opposition spikes depends significantly on size of scattering surface particles, (2) a contribution from the coherent backscatter enhancement is well detected even for surface with an albedo of about 10 %.
|
Keywords: Clementine, lunar opposition effect, Moon |
References:
1. Shkuratov Y. G. On the origin of the opposition effect and negative polarization for cosmic bodies with solid surfaces. Astron. Circular, N 1400, 3— 6 (1985) [in Russian].
2. Shkuratov Iu. G. A diffraction mechanism for the formation of the opposition effect of the brightness of surfaces having a complex structure. Kinematika i Fizika Nebesnykh Tel, 4 (4), 33—39 (1988) [in Russian].
3. Shkuratov Yu. G., Stankevich D. G., Ovcharenko A. A., Korokhin V. V. A Study of Light Backscattering from Planetary-Regolith-Type Surfaces at Phase Angles 0.2deg-3.5deg. Astron. vestnik, 31 (1), 56— 63 (1997) [in Russian].
4. Buratti B. J., Hiller J. K., Wang M. The lunar opposition surge: observation by Clementine. Icarus, 124, 490— 499 (1996).
https://doi.org/10.1006/icar.1996.0225
https://doi.org/10.1006/icar.1996.0225
5. Franklin F. A., Cook A. F. Optical properties of Saturn's rings II. Two-color phase curves of the two bright rings. Astron. J., 70 (9), 704—720 (1965).
https://doi.org/10.1086/109806
https://doi.org/10.1086/109806
6. Hapke B. Bidirectional reflectance spectroscopy. I. Theory. J. Geophys. Res., 86 (B4), 3039—3054 (1981).
https://doi.org/10.1029/JB086iB04p03039
https://doi.org/10.1029/JB086iB04p03039
7. Hapke B., Nelson R. M., Smith W. The opposition effect of the Moon: the contribution of coherent backscatter. Science, 260, 509—511 (1993).
https://doi.org/10.1126/science.260.5107.509
https://doi.org/10.1126/science.260.5107.509
8. Harris A. W., Young J. W., Contreiras L. et al. Phase relations of high albedo asteroids: the unusual opposition brightnening of 44 Nysa and 64 Angelina. Icarus, 81, 365— 374 (1989).
https://doi.org/10.1016/0019-1035(89)90057-2
https://doi.org/10.1016/0019-1035(89)90057-2
9. Helfenstein P., Veverka J., Hiller J. The lunar opposition effect: a test of alternative models. Icarus, 128, 2— 14 (1997).
https://doi.org/10.1006/icar.1997.5726
https://doi.org/10.1006/icar.1997.5726
10. Mishchenko M. I. The angular width of the coherent backscatter opposition effect: an application to icy outer planet satellites. Astrophys. and Space Sci., 189, 151 — 154 (1992).
https://doi.org/10.1007/BF00642962
https://doi.org/10.1007/BF00642962
11. Mishchenko M. I., Dlugach J. M. The amplitude of the opposition effect due to weak localization of photons in discrete desordered media. Astrophys. and Space Sci., 189, 151 — 154 (1992).
https://doi.org/10.1007/BF00642962
https://doi.org/10.1007/BF00642962
12. Muinonen K. Electromagnetic scattering by two interacting dipoles. Proc. of the URSI Intern. Sym. on electromagn. Theory, 428—430 (Stockholm, 1989).
13. Muinonen K. Coherent backscattering by solar system dust particles. Asteroigs, comets, meteors: IAU Coll. 160, Eds A. Milani, M. DiMartino, A. Celino, 271—296 (Kluwer, Dordrecht, 1993).
14. Nozette S., et al. The Clementine mission to the Moon: Scientific overview. Science, 266, 1835—1839 (1994).
https://doi.org/10.1126/science.266.5192.1835
https://doi.org/10.1126/science.266.5192.1835
15. Piironen J., Muinonen K., Karttunen H. Studies of snow in backscattered light. Solar system ices: An Inter. Symp., P. 95 (Toulouse Univ., 1995).
16. Pohn H. A., Wildey R. L., Offield T. W. Correlation of the zero-phase brightness surge (heiligenschein) with lunar-surface roughness. Apollo 14 Prelim. Sci. Rep. Part F, NASA SP-272 (1971).
17. Shkuratov Yu. G., Kreslavsky M. A., Stankevich D. G. On the lunar opposition spike observed by Clementine. Lunar and Planet. Sci.: Conf. 28-th. LPI. Houston, 1307— 1308 (1997).
18. Thompson D. T., Lockwood G. W. Photoelectric photometry of Europa and Callisto. J. Geophys. Res., 97, 14761 — 14772 (1992).
https://doi.org/10.1029/92JE01399
https://doi.org/10.1029/92JE01399
19. Thorpe T. E. The Mars opposition effect at 20 N latitude and 20 W longitude. Icarus, 37, 389—398 (1979).
https://doi.org/10.1016/0019-1035(79)90003-4