"Multisphere" system of radiometric calibration of precise space borne optoelectronic instruments for remote sensing
1Mikheenko, LA, 1Borovytskyi, VN 1National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine |
Kosm. nauka tehnol. 2014, 20 ;(4):22-30 |
https://doi.org/10.15407/knit2014.04.022 |
Publication Language: Ukrainian |
Abstract: We propose new procedures, schemes and apparatus for the calibration of precise electro-optical instruments for remote sensing and for the absolutization of measurements of energetic characteristics. The procedures and schemes apply the light source based on optically-interconnected integrating spheres. For typical light source design the output radiance is up to 600 W/(st·m2) with dynamic range 1 000 000 and non-uniformity of the radiance throughout the output aperture is 0.5 %. That guarantees a high metrological level of the measurements using the components available in Ukraine. |
Keywords: calibration, instruments for remote sensing, metrology |
1. Avanesov G. A., Bogdanov A. A., Naumov A. P. Methods and apparatus radiometric calibration in absolute energy units of the multispectral scanning system "Fragment". Earth Res. from Space, No. 6, 79—88 (1981) [in Russian].
2. Varichenko L. V., Kolobrodov V. G., Ladyka Ya. Ye., et al. Some methods and measurement means for energetic characteristics of optoelectronic Earth remote imagers. Kosm. nauka tehnol., 12 (2/3), 59—69 (2006) [in Russian].
3. Kiseljov I. A., Korostelev A. I., Naraeva M. K. et al. Control of the energy characteristics of multispectral scanners satellite "Resurs-01". Earth Res. from Space, No. 2, 34—43 (1991) [in Russian].
4. Miheenko L. A. Problems and prospects of energy calibration of optoelectronic systems for remote sensing of high and very high resolution. Pryladobuduvannja 2011: stan i perspektyvy: tezy dop. (mizhnar. nauk.-tehn. konf., 19—20 kvitnja 2011 r.), P. 73—74 (Kyiv, 2011) [in Russian].
5. Miheenko L. A., Borovickij V. N. The transmitter variable brightness based on conjugated integrating spheres. Tehnologija i konstruirovanie radiojelektronnoj apparatury, No. 6 (66), 61—64 (2006) [in Russian].
6. Miheenko L. A., Borovickij V. N. Secondary standard brightness on the basis of the halogen incandescent lamp. Tehnologija i konstruirovanie radiojelektronnoj apparatury, No. 3 (75), 61—64 (2008) [in Russian].
7. Mikheenko L.А., Borovytsky V.N. Metrological support of radiometric calibration of optoelectronic instruments for Earth remote sensing. Kosm. nauka tehnol., 15 (5), 3—15 (2009) [in Russian].
https://doi.org/10.15407/knit2009.05.003
8. Mihejenko L. A. Energy calibration optoelectronic systems for remote sensing of high resolution. Pryladobuduvannja 2009: stan i perspektyvy: tezy dop. (mizhnar. nauk.-tehn. konf., 28 — 29 kvitnja 2009 r.), P.42 (Kyiv, 2009) [in Ukrainian].
9. Miheenko L.A., Bilinska I.Y. Wide-range spectrum-comparator. Bulletin of National Technical University of Ukraine "Kyiv Polytechnic Institute". Series Instrument Making, Issue 38, 30—38 (2009) [in Ukrainian].
10. Mikheyenko L.A., Gordienko Yu.O. Metrological Analysis of the Diffuse Light Source of Variable Brightness Based on Conjugate Integrating Spheres. Research Bulletin of NTUU "KPI", No.5, 88—95 (2009) [in Ukrainian].
11. Panfilov A. S., Burdakin A. A., Ivanov V. S. et al..All-Rus. RIOPhM works in the field of metrology to ensure radiometric calibration and flight stability control optical Earth observation equipment. Current problems in remote sensing of the Earth from space, Issue 5 (Vol.1), 288—294 (2008) [in Russian].
12. Panfilov A. S., Saprickij V. I. Global Earth Observation System and ensuring the uniformity of measurements in its implementation. Measurement Techniques, No. 4, 71—72 (2005) [in Russian].
13. Mikheienko L.A., Bilinska I.Yu. Photometric reducer. Pat. 52547 Ukraine, MPK G01J 1/02, No. u201003426, published 25.08.2010, Bull. No.16 [in Ukrainian].
14. Mikheienko L.A., Hordienko Yu.O. Emitter with variable brightness on basis of connected integrating spheres. Pat. 58152 Ukraine, MPK G01J 1/10 602В 21/06, No. u201007694, published 11.04.2011, Bull. No.7 [in Ukrainian].
15. Tynnison T. A., Graf R. Je., Mjartin L. O. Verification unit "Spectrum" for metrological certification of aerospace radiometric equipment in the wavelength range of 0.3 - 2.5 mcm. Remote sensing of atmosphere from space station "Salyut 7" - "Cosmos 1686" - "Soyuz T14", 54—66 (Tartu, 1989) [in Russian].
16. Butler J. J., Brown S. W., Sauders R. D., Jonson B. C. Radiometrie Measurement Comparision on the Integratny Sphere Source Used to Calibrate the Moderate Resolution Imaginy Spectroradiometer (MODIS) and the “Landsat 7” Enhanced Thematic Mapper Plus (ETM+). J. Res. Nat. Inst. Stand. and Tehnology. 108 (3), 199—208 (2003).
https://doi.org/10.6028/jres.108.020
17. GlobalEarth Observation System GEOSS. 10-Year Implementation Plan. GEO 1000, 27 p. (2005).
18. Mendenhall J. A., Lencioni D. E., Evans J. B.Spectral and radiometric calibration of the advanced land imager. Lincoln lab. J. N 2, 207 — 223 (2005).
19. Mikheenko L. A. Metrological advantages of the light source based on optically connected integration. Proc. SPIE. 8511, 39.1—39.12 (2012).
20. Mikheenko L. A., Borovytsky V. N. Precise uniform light source based on optically connected integration spheres for optical instrument calibration. Proc. SPIE. 8154, 19.1—19.9 (2011).
21. Mikheenko L. A., Borovytsky V. N. Energetic balance in the precise uniform light source based on optically connected integration spheres. Proc. SPIE. 8866, 8866IV.1 — 8866IV.12 (2013).
22. Miura T., Huete A., Yoshioka R. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans. Geosci. and Remote Sens. 38 (3), 1399 — 1409 (2000).
https://doi.org/10.1109/36.843034
23. Ohring G., Wielicki B., Spencer R., et al. Satellite Instrument Calibration for Measuring Global Climate Change. NIST Publ. N 7047, 108 p. (2004).
24. Suzuki N., Narimatsu Y., Nagura N., et al. Large integrating sphere of prelaunch calibration system for Japanese earth resources satellite optical sensors. Proc. SPIE. 1493, 48—57 (1991).
https://doi.org/10.1117/12.46684
25. Walker J. H., Cromer C. L. A technique for improving the calibration of large-area sphere sources. Proc. SPIE. 1493, 224—230 (1991).
https://doi.org/10.1117/12.46707