Excitation of meridional flow by differential rotation in Earth's liquid core
Heading:
1Loginov, AA, 2Samoilenko, Yu.I, 1Tkachenko, VA 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine 2Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2000, 6 ;(2):53–68 |
https://doi.org/10.15407/knit2000.02.053 |
Publication Language: Russian |
Abstract: We investigate the excitation of meridional flow by the differential rotation of the Earth's liquid core. The excitation mechanism is based on the hypothesis about the primary role of the differential rotation of the inner core and mantle. For cylindrical and spherical liquid layers confined between two rotating axially symmetric shells, the conditions for the azimuth flow instability which creates a meridional component were obtained. Methods were proposed for the solution of nonlinear equations describing steady flows at large Reynolds numbers.
|
Keywords: differential rotation, excitation mechanism, nonlinear equations |
References:
1. Arnold V. I. Mathematical Methods of Classical Mechanics, 472 p. (Nauka, Moscow, 1989) [in Russian].
https://doi.org/10.1007/978-1-4757-2063-1
https://doi.org/10.1007/978-1-4757-2063-1
2. Braginsky S. I. Structure of the F layer and reasons for convection in the Earth's core. Dokl. Akad. Nauk SSSR, 149, 8—10 (1963) [in Russian].
3. Braginskii S. I. Nearly axially symmetric model of the hydromagnetic dynamo of the earth. I. Geomagnetizm i Aeronomiia, 15, 149—156 (1975) [in Russian].
4. Busse F. H. Magnetohydrodynamics of the Earth's dynamo. In: Vortices and Waves, 199—233 (Mir, Moscow, 1984) [in Russian].
5. Dolginov Sh. Sh. Investigations of the magnetic fields of planets. In: Electromagnetic and plasma processes from the sun to the earth's core, 247—261 (Nauka, Moscow, 1989) [in Russian].
6. Krechetov V. V. Tidal forces and generation of planetary magnetic fields. Kosmicheskie Issledovaniia, 37 (4), 392—396 (1999) [in Russian].
7. Landau L. D., Lifshits E. M. Electrodynamics of Continuous Media, 532 p. (Fizmatgiz, Moscow, 1959) [in Russian].
8. Landau L. D., Lifshits E. M. Gidrodynamics, 733 p. (Nauka, Moscow, 1986) [in Russian].
9. Munk W., MacDonald G. The Rotation of the Earth. (Mir, Moscow, 1964) [in Russian].
10. Moffatt H. K. Magnetic field generation in electrically conducting fluids, 339 p. (Mir, Moscow, 1980) [in Russian].
11. Shafranov V. D. Plasma Equilibrium in a Magnetic Field. In: Reviews of Plasma Physics, Ed.by M. A. Leontovich, Vol. 2, 92—131 (Gosatomizdat, Moscow, 1963) [in Russian].
12. Backus G., Chandrasekhar S. On Cowling's theorem on the impossibility of self-maintained axisymmetric homogeneous dynamos. Proc. Natl. Acad. Sci., 42, 105—109 (1956).
https://doi.org/10.1073/pnas.42.3.105
https://doi.org/10.1073/pnas.42.3.105
13. Bullard E. C. Reversals of the Earth's magnetic field. Phil. Trans. Roy. Soc., A 263, 481—524 (1968).
14. Bullard E. C., Gellman H. Homogeneous dynamos and terrestrial magnetism. Philos. Trans. Roy. Soc. London. Ser. A, 247, 213—278 (1954).
15. Cheremnykh O. K., Edenstrasser J. W., Gorin V. V. Relaxation of a non- ideal incompressible plasma with mass flow. J. Plasma Phys., 62, part 2, 195—202 (1999).
https://doi.org/10.1017/S0022377899007849
https://doi.org/10.1017/S0022377899007849
16. Cowling T. G. The magnetic field of sunspots. Mon. Notic. Roy. Astron. Soc., 94, 39—48 (1934).
https://doi.org/10.1093/mnras/94.1.39
https://doi.org/10.1093/mnras/94.1.39
17. Cowling T. G. Sunspots and the solar cycle. Nature, 255, 189—190 (1975).
https://doi.org/10.1038/255189a0
https://doi.org/10.1038/255189a0
18. Elsasser W. M. Thermal stratification and core convection. Abstr. EOS Trans. Am. Geophys. Union, 53, 605 p. (1972).
19. Frazer M. C. Temperature gradients and conveclive velocity in the Earth's magnetic field. Geophys. J. Roy. Astron. Soc., 34, 193—201 (1973).
https://doi.org/10.1111/j.1365-246X.1973.tb02392.x
https://doi.org/10.1111/j.1365-246X.1973.tb02392.x
20. Glatzmaier G. A., Roberts P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377, 203—209 (1995).
https://doi.org/10.1038/377203a0
https://doi.org/10.1038/377203a0
21. Malkus W. V. Procession on the Earth as the cause of geomagnetism. Science, 160, 259—264 (1968).
https://doi.org/10.1126/science.160.3825.259
https://doi.org/10.1126/science.160.3825.259
22. Roberts P. H. Dynamics of the core, geodynamo. Rev. Geophys., 33 Suppl. (U. S. National Report to IUGG, 1991 — 1994) (1995).
23. Rochester M. G., Jacobs W. A., Smylie D. E., Chong K. F. Can procession power the geomagnetic dynamo? Geophys. J. Roy. Astron. Soc., 43, 661—678 (1975).
https://doi.org/10.1111/j.1365-246X.1975.tb06186.x
23. Rochester M. G., Jacobs W. A., Smylie D. E., Chong K. F. Can procession power the geomagnetic dynamo? Geophys. J. Roy. Astron. Soc., 43, 661—678 (1975).
https://doi.org/10.1111/j.1365-246X.1975.tb06186.x
24. Stevenson D. J. The core — mantle electrochemical cell as an explanation for part of the geomagnetic field, 72, Supp., 133 p. (EOS, 1991).