Electron beam injection quasilateral to the geomagnetic field from the data of Intercosmos-25 satellite: APEX project
Heading:
1Baranets, NV, 1Ruzhin, Yu.Ya., 2Afonin, VV, 2Afonin, VV, 1Oraevsky, VN, 1Pulinets, SA, 1Dokoukin, VS, 1Mikhailov, Yu.M, 1Sobolev, Ya.P, 1Zhuzgov, LN, 1Prutensky, IS 1Pushkov Institute of Terrestrial Magnetism, Ionosphere and Propagation of Radio Waves of the Russian AS, Troitsk, Russia 2Space Research Institute of the Russian AS, Moscow, Russia |
Kosm. nauka tehnol. 2000, 6 ;(5):49-62 |
https://doi.org/10.15407/knit2000.05.049 |
Publication Language: Russian |
Abstract: We investigate the beam-plasma instability effects arising on the injection of charged particle beams and neutral xenon into the ionospheric plasma. Special consideration is given to the injection of the an unmodulated electron beam (dc) with the current Ibe ≈ 0.1 А and the energy εЬе= mv2/2 ≈ 10 KeV into a background plasma. Complex analysis of this problem is carried out with a special data processing which can be determined as the closest approach to the laboratory style of experiment.
|
Keywords: APEX project, background plasma, beam-plasma instability effects |
References:
1. Galeev A. A., Oraevskii V. N. O neustojchivosti al'fvenovskih voln. Dokl. AN SSSR, 147 (1), 71—73 (1962) [in Russian].
2. Galeev A. A., Sagdeev R. Z., Shapiro V. D., Shevchenko V. I. Relaxation of high-current electron beams and the modulational instability. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 72 (2), 507—517 (1977) [in Russian].
3. Katsubo L. P., Kovalenko V. P., Soloshenko I. A. Space-time focusing of an ion beam that excites transverse Langmuir ion plasma oscillations. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 67 (1), 110—117 (1974) [in Russian].
4. Landau L. D., Lifshits E. M. Electrodynamics of Continuous Media, 532 p. (Fizmatgiz, Moscow, 1959) [in Russian].
5. Lizunov G. V., Silivra A. A. Electron-beam injection into the ionospheric plasma at an angle to the geomagnetic field. Geomagnetizm i Aeronomiia, 28 (6), 980—984 (1988) [in Russian].
6. Matsiborko N. G., Onishchenko I. N., Fainberg Ya. B., et al. Interaction of Finite Perturbations in a Beam-Plasma System. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 63 (3), 874—885 (1972) [in Russian].
7. Moffatt H. K. Magnetic field generation in electrically conducting fluids, 339 p. (Mir, Moscow, 1980) [in Russian].
8. Nezlin M. V., Solntsev A. M. Unstable Plasma Beam. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 48 (5), 1237—1247 (1965) [in Russian].
9. Sagdeev R. Z., Shapiro V. D., Shevchenko V. I. Attenuation of an intense electromagnetic wave in an inhomogeneous plasma and 'ultrastrong' plasma turbulence. Fizika Plazmy, 6 (2), 377—382 (1980) [in Russian].
10. Stepanov K. N., Kitsenko A. B. O vozbuzhdenii jelektromagnitnyh voln v magnitoaktivnoj plazme puchkom zarjazhennyh chastic. Zhurn. teoret. fiziki, 31 (2), 167—175 (1961) [in Russian].
11. Banks P. M., Rain W. J. Observations of electron beam structure in space experiments. J. Geophys. Res., 93 (A6), 811—822 (1988) [in Russian].
https://doi.org/10.1029/JA093iA06p05811
https://doi.org/10.1029/JA093iA06p05811
12. Hollweg J. V. Density fluctuations driver by Alfven waves. J. Geophys. Res., 76 (22), 5155—5161 (1971).
https://doi.org/10.1029/JA076i022p05155
https://doi.org/10.1029/JA076i022p05155
13. Jacobsen T. A., Maynard N. C. POLAR 5 — An electron accelerator experiment within an aurora: 3. Evidence for significant spacecraft charging by an electron accelerator at ionospheric altitudes. Planet. Space Sci., 28 (3), 291—307 (1980).
https://doi.org/10.1016/0032-0633(80)90019-7
https://doi.org/10.1016/0032-0633(80)90019-7
14. Knudsen W. C. Evaluation and demonstration of the use of retarding potential analyzers for measuring several ionospheric quantities. J. Geophys. Res., 71 (19), 4669— 4679 (1966).
https://doi.org/10.1029/JZ071i019p04669
https://doi.org/10.1029/JZ071i019p04669
15. Maehlum B. N., Grandal B., Jacobsen T. A., Troim J. POLAR 5. An electron accelerator experiment within an aurora: 2. Scattering of an artificially produced electron beam in the atmosphere. Planet. Space Sci., 28 (3), 279— 289 (1980).
https://doi.org/10.1016/0032-0633(80)90018-5
https://doi.org/10.1016/0032-0633(80)90018-5
16. Oraevsky V. N., Ruzhin Yu. Ya., Dokukin V. S. The dynamics of the object potential during electron beam injection and the possibility to control it. Adv. Space Res., 12 (12), 1243—1247 (1992).
https://doi.org/10.1016/0273-1177(92)90349-3
https://doi.org/10.1016/0273-1177(92)90349-3
17. Oraevsky V. N., Triska P. Active plasma experiment — project APEX. Adv. Space Res., 13 (10), 10103— 10111 (1993).
https://doi.org/10.1016/0273-1177(93)90057-I
https://doi.org/10.1016/0273-1177(93)90057-I
18. Pouquet A., Patterson G. S. Numerical simulation of helical magnetohydrodynamic turbulence. J. Fluid Mech., 85 (2), 305—323 (1978).
https://doi.org/10.1017/S0022112078000658
https://doi.org/10.1017/S0022112078000658
19. Spangler S. R. Kinetic effects of Alfven wave nonlinearity. I. Ponderomotive density fluctuations. Phys. Fluids, B l (8), 1738—1746 (1989).
20. Uberoi C. Alfven waves in inhomogeneous magnetic fields. Phys. Fluids, 15 (9), 1673—1675 (1972).
https://doi.org/10.1063/1.1694148
https://doi.org/10.1063/1.1694148
21. Wilhelm K., Bernstein W. Whalen B. A. Study of electric fields parallel to the magnetic lines of force using artificially injected energetic electrons. Geophys. Res. Lett., 7 (1), 117—120 (1980).
https://doi.org/10.1029/GL007i002p00117
https://doi.org/10.1029/GL007i002p00117
22. Winckler J. R. The application of artificial electron beams to magnetospheric research. Revs Geophys. and Space Phys., 18 (3), 659—682 (1980).
https://doi.org/10.1029/RG018i003p00659
https://doi.org/10.1029/RG018i003p00659
23. Winglee R. M., Pritchett P. L. Comparative study of cross-field and field-aligned electron beams in active experiments. J. Geophys. Res., 93 (A6), 5823—5844 (1988).
https://doi.org/10.1029/JA093iA06p05823