Some features of turbulent processes in the earth’s magnetosphere from the CLUSTER mission measurements
Heading:
1Kozak, LV, 2Savin, SP, 3Lui, AT, 4Tsupko, OO 1Taras Shevchenko National University of Kyiv, Physical Faculty, Kyiv, Ukraine 2Space Research Institute of the Russian AS, Moscow, Russia 3Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 4Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kosm. nauka tehnol. 2012, 18 ;(2):43–54 |
https://doi.org/10.15407/knit2012.02.043 |
Publication Language: Ukrainian |
Abstract: Statistical features of magnetic field fluctuations in bound regions of the Earth’s magnetosphere are investigated on different time scales. The Cluster-2 mission measurements made during 2004—2009 are used for our analysis. Changes in the shape and parameters of probability density function for the magnetic field fluctuations are studied for the time intervals when the satellite was within the magneto-layer, solar plasma wind and magnetopause region. The evolution of the change of the probability density function maximum and kurtosis values are considered and structure functions of different orders are investigated as characteristics of turbulent processes for different time scales. Two asymptotic modes of the change in the maximum height for the probability density function are found which can be described with the use of different power lows. On the basis of the investigation of structure functions of high orders (up to the ninth order), the character of turbulent processes is determined and diffusion in the regions under consideration is studied. It is found that the type of the turbulent processes in the solar wind plasma differ greatly from one in the magneto-layer. Besides, super-diffusion is revealed in transitional regions of the Earth’s magnetosphere.
|
Keywords: Earth's magnetosphere, magnetic field fluctuations, mission Cluster, solar wind |
References:
1. Barenblatt G. I. Turbulent boundary layers at very large Reynolds numbers, Uspehi mat. nauk, 59, N1(355), 45—62 (2004) [in Russian].
2. Zaks L. Statistical estimation, 598 p. (Statistika, Moscow, 1976) [in Russian].
3. Zaslavskij G. M., Sagdeev R. Z. Introduction to nonlinear physics. From the pendulum to turbulence and chaos, 368 p. (Nauka, Moscow, 1988) [in Russian].
4. Iroshnikov P. S. On the turbulence of a conducting fluid in a strong magnetic field, Astron. zhurn., 40 (4), 742—750 (1963) [in Russian].
5. Kadomcev B. B. Turbulence plasma. Plasma Physics Questions, Ed. by M.A. Leontovich, 188—339 (Atomizdat, Moscow, 1964) [in Russian].
6. Kadomcev B. B. Collective phenomena in plasma, 303 p. (Nauka, Moscow, 1988) [in Russian].
7. Kozak L.V. A statistical approach for turbulent processes in the Earth ’s magnetosphere from measurements of the satellite Interball. Kosm. nauka tehnol, 16 (1), 28—39 (2010) [in Russian].
https://doi.org/10.15407/knit2010.01.028
https://doi.org/10.15407/knit2010.01.028
8. Kozak L.V., Pilipenko V.A., Chugunova O.M., Kozak P.N. Statistical analysis of turbulence in the foreshock region and in the Earth's magnetosheath. Cosmic Research, 49 (3), 202—212 (2011) [in Russian].
https://doi.org/10.1134/S0010952511030063
https://doi.org/10.1134/S0010952511030063
9. Kolmogorov A. N. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers. Dokl. Academy of Sciences of the USSR, 30(4), 299 — 303 (1941) [in Russian].
10. Zelenyj L.M., Veselovskij I.S. (Eds.) Space geoheliophysics. Vol. 1, 624 p. (Vol. 1-2; Vol. 1) (Fizmatlit, Moscow, 2008) [in Russian].
11. Novikov E. A., Stjuart R. U. The intermittency of turbulence and a range of energy dissipation fluctuations. Bulletin of the Academy of Sciences of the USSR. Geophysics Series, N 3, 408—413 (1964) [in Russian].
12. Savin S.P., Zelenyi L.M., Amata E., et al. Dynamic interaction of plasma flow with the hot boundary layer of a geomagnetic trap. Journal of Experimental and Theoretical Physics Letters, 79 (8), 452—456 (2004) [in Russian].
https://doi.org/10.1134/1.1772433
https://doi.org/10.1134/1.1772433
13. Frisch U. Turbulence. The Legacy of A.N.Kolmogorov, 343 p. (Fazis, Moscow, 1998) [in Russian].
14. Benzi R., Ciliberto S., Tripiccione R., et al. Extended selfsimilarity in turbulent flows, Phys. Rev. E, 48, P. R29—R32 (1993).
https://doi.org/10.1103/PhysRevE.48.R29
https://doi.org/10.1103/PhysRevE.48.R29
15. Chechkin A. V., Gorenflo R., Sokolov I. M. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights, Phys. Rev., 66, 046129, P. 13 (2002).
16. Consolini G., Kretzschmar M., Lui A. T. Y., et al. On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach, J. Geophys. Res., 110, P. A07202, (2005)
https://doi.org/10.1029/2004JA010947
https://doi.org/10.1029/2004JA010947
17. Dubrulle B. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance, Phys. Rev. Lett., 73, 959—962 (1994).
https://doi.org/10.1103/PhysRevLett.73.959
https://doi.org/10.1103/PhysRevLett.73.959
18. Kraichnan R. H. The structure of isotropic turbulence at very high Reynolds numbers, J. Fluid Mech., 5, 497—543 (1959).
https://doi.org/10.1017/S0022112059000362
https://doi.org/10.1017/S0022112059000362
19. Kraichnan R. H. Lagrangian — history closure approximation for turbulence, Phys. Fluids, 8, 575—598 (1965).
https://doi.org/10.1063/1.1761271
20. Kraichnan R. H. Convergents to turbulence functions, J. Fluid Mech., 41, 189—217 (1970).
https://doi.org/10.1017/S0022112070000587
21. Lovejoy S., Schertzer D., Silas P. Diffusion in One Dimensional Multifractal Porous Media, Water Resour. Res., 34, 3283—3291 (1998).
https://doi.org/10.1029/1998WR900007
https://doi.org/10.1029/1998WR900007
22. Savin S., Amata E., Zelenyi L., et al. High kinetic energy jets in the Earth’s magnetosheath: Implications for plasma dynamics and anomalous transport, JETP Lett., 87, 593—599 (2008).
https://doi.org/10.1134/S0021364008110015
23. Shevyrev N. N., Zastenker G. N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks, Planet. and Space Sci., 53, 95—102 (2005).
https://doi.org/10.1016/j.pss.2004.09.033
24. She Z., Leveque E. Universal scaling laws in fully developed turbulence, Phys. Rev. Lett., 72, 336—339 (1994).
https://doi.org/10.1103/PhysRevLett.72.336
25. Treumann R. A. Theory of super-diffusion for the magnetopause, Geophys. Res. Lett., 24, 1727— 1730 (1997).
https://doi.org/10.1029/97GL01760
https://doi.org/10.1029/97GL01760