Magnetic system for controlling the angular motion of a micro-satellite
Heading:
1Lebedev, DV, 2Tkachenko, AI, 1Shtepa, Yu.N 1V.M. Glushkov Institute of Cybernetics of the National Academy of Science of Ukraine, Kyiv, Ukraine 2International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 1996, 2 ;(3):17–25 |
https://doi.org/10.15407/knit1996.05.017 |
Publication Language: Russian |
Abstract: An algorithmic support for the attitude control and stabilization system of a small spacecraft (micro-satellite) is considered. This system uses geomagnetic field effects only in both the measuring subsystem and the control subsystem. Fast solution is attained for the orientation and stabilization problem with any initial spacecraft attitude and large angular rates by means of effective algorithms for state estimation and control.
|
Keywords: attitude control, micro-satellite, stabilization |
References:
Bakan G. M. Algorithms of construction of guaranteed and fuzzy estimates in linear systems based on the least-squares method. Probl. Upravl. Inform., No. 3, 117—129 (1995) [in Russian].
Barbashin Ye. A. The Liapunov functions. [Funkcii Ljapunova], 240 p. (Nauka, Moscow, 1970) [in Russian].
Beletskij V. V. Motion of a satellite about the center of mass in a gravitational field, 308 p. (Mosk. un-t, Moscow, 1975) [in Russian].
Beletskii V. V., Khentov A. A. Magnetized Satellite Rotation. [Vrashchatel’noe dvizhenie namagnichennogo sputnika], 285 p. (Nauka, Moscow, 1985) [in Russian].
Branec V. N., Shmyglevskij I. P. The use of quaternions in problems of solid-state orientation, 320 p. (Nauka, Moscow, 1973) [in Russian].
Demidovich B.P. Lectures on the Mathematical Theory of Stability. [Lekcii po matematicheskoj teorii ustojchivosti], 472 p. (Nauka, Moscow, 1967) [in Russian].
Egorov S. N. The use of dynamics equations in the synthesis of algorithms of attitude determination. Kosm. issled., 30, is. 1, 38—44 (1992) [in Russian].
Zubov V. I., Ermolin V. S., Sergeev S. L., Smirnov E. Ia. Control of the rotational motion of a solid body, 200 p. (Izdatel'stvo Leningradskogo Universiteta, Leningrad, 1978) [in Russian].
Kovalenko A. P. Magnetic space vehicles control systems, 248 p. (Mashinostroenie, Moscow, 1975) [in Russian].
Krasovskij N. N. Problems of stabilization of controlled motions. In: Malkin I.G. Theory of Motion Stability [Teorija ustojchivosti dvizhenija], Dopolnenie IV, P. 475—514 (Nauka, Moscow, 1966) [in Russian].
Lebedev D. V. Rigid body orientation control using Rodrigues-Hamilton parameters. Avtomatika, N 4, 29—32 (1974) [in Russian].
Lebedev D. V., Tkachenko A. I. Inertial Control Systems. Algorithmic Aspects. [Sistemy inercial'nogo upravlenija. Algoritmicheskie aspekty], 203 p. (Nauk. dumka, Kiev, 1991) [in Russian].
Lebedev D. V., Tkachenko A. I. Management spherical spacecraft motion in the magnetic field of the earth:. Pt I. Dataware. Probl. Upravl. Inform., No. 6, 5—18 (1995) [in Russian].
Lebedev D. V., Tkachenko A. I. Upravlenie sfericheskim dvizheniem kosmicheskogo apparata v magnitnom pole Zemli. Pt. II. Orientation and stabilization. Probl. Upravl. Inform., No. 3, 5—18 (1996) [in Russian].
Furasov V. D. Stability of motion, assessment and stabilization, 247 p. (Nauka, Moscow, 1977) [in Russian].
Hodgart M. S. Gravity gradient and magnetorquing attitude control for low-cost low-Earth orbit satellites: the UOSAT experience. Proc. of the AIAA/AAS Astrodynamics Conf., P. 421—430 (Coll. Tech. Pap) (Washington, DC, 1988).
Psiaki M. L., Martel F., Pal P. K. Three-axis attitude determination via Kalman filtering of magnetometer data. J. Guid., Control and Dynamics, 13 (3), 506—514 (1990).
https://doi.org/10.2514/3.25364