Goals, methods, and algorithms of locally-adaptive robust filtering of radar images

1Lukin, VV
1National Aerospace University '”Kharkov Aviation Institute”, Kharkiv, Ukraine
Kosm. nauka tehnol. 1998, 4 ;(2):39–50
Publication Language: Russian
The goals, methods, and algorithms of robust locally-adaptive filtering of radar images corrupted with multiplicative and impulsive noises are considered. The methods allow efficient noise suppression and spike removal, and at the same time they preserve object edges and fine details. The filter properties are illustrated for actual remote sensing data.
Keywords: algorithms, locally-adaptive filtering of radar images, noise
1. Ahmet'janov V. R., Pasmurov A.Ya. Radar image processing tasks of remote sensing of the Earth. Zarubezhnaja radiojelektronika, No. 1, 70—81 (1987) [in Russian].
2. Belokurov A. A. Methods of smoothing the speckle noise in radar images of the Earth's surface. Zarubezhnaja radiojelektronika, No. 6, 26—35 (1990) [in Russian].
3. Zelenskij A. A., Kulemin G. P., Lukin V. V., Mel'nik V. P. Locally adaptive robust image processing algorithms: Preprint of IRE NASU, No. 93-8, Kharkov, Ukraine, 39 p. (Kharkov, 1993) [in Russian].
4. Zelenskij A. A., Lukin V. V., Mel'nik V. P. Adaptive filtering images millimeter wave. In: Use radio waves in the millimeter and submillimeter ranges, 28—32 (IRE NAN Ukrainy, Kharkov, 1993) [in Russian].
5. Kalmykov A. I., Tsymbal V. N., Blinkov A. N., et al. Multi-purpose system for radar sensing of the environment of the Earth from space. Justification of the choice of parameters and proposals for the establishment, 99 p. (VINITI, Moscow, 1988) [in Russian].
6. Ali S. M., Burge R. E. New automatic techniques for smoothing and segmenting SAR images. Signal Proc., 14, 335—346 (1988).
7. Anukhin I. P., Lukin V. V., Zelensky A. A. Fast data weighting algorithms for non-focused SAR image forming. Proc. Inter. Symp. AeroSense'95, SPIE, Orlando, Florida, USA, 2487, 404—411 (April 1995).
8. Campbell T. G. Design and implementation of image filters: Thesis for the Degree of Doctor of Technology, 138 p. (Tampere, 1992).
9. Durand J. M., Gimonet B. J., Perbos J. R. Speckle in SAR images: an evaluation of filtering techniques. Adv. Space Res., N 11, 301—304 (1987).
10. Goodman G. W. Some fundamental properties of speckle. J. Opt. Soc. Amer., 66 (11), 1145—1149 (1976).
11. Gorbunenko B. F., Totsky A. V. Statistical investigations of the synthetic aperture images. Int. J. Remote Sensing, 15 (9), 1761 — 1774 (Sept. 1994).
12. Heinonen P., Neuvo Y. FIR-median hybrid filters. IEEE Trans., ASSP-35, N 6, 832—838 (1987).
13. Kalmykov A. I., Lukin V. V., Zelensky A. A. Some techniques and algorithms of SAR image enhancement on stages of primary and Secondary Signal Processing. Proc. EUSAR'96, Konigswinter, Germany, 135—138 (March 1996).
14. Keydel W. SAR Technique and technology, its present state of the art with respect to user requirements. Proc. EUSAR'96, Konigswinter, Germany, 19—24 (1996).
15. Ko J., Lee J.-H. Center-weighted median filters and their application to image enhancement. IEEE Trans., CAS-38, 984—993 (1991).
16. Kuan D. T., Sawchuk A. A., Strand T. C., Chavel P. Adaptive restoration of images with speckle. IEEE Trans., ASSP-35, N 3, 373—383 (1987).
17. Kulemin G. P., Kurekin A. A., Lukin V. V., Zelensky A. A. Soil moisture and erosion degree estimation from multichannel microwave remote sensing data. Remote sensing for agriculture, forestry and natural resources: Proc. SPIE/EUROPTO Series, Paris, France, Sept. 1995, 2585, 144—155 (1995).
18. Kulemin G. P., Lukin V. V., Ponomarenko N. N., et al. Influence of phase fluctuations in troposphere on SAR calibration accuracy. Proc. Second Inter. Airborne Remote Sensing Conf. and Exhibition, San Francisco, CA, USA, June 1996, Vol. II, P. II-434—II-443 (1996).
19. Lee J.-S. Speckle Analysis and smoothing of synthetic Aperture radar images. Computer Vision, Graphics and Image Processing, 17, 24—32 (1981).
20. Lee J.-S. Digital Image Smoothing and the Sigma Filter. Comput. vision, Graphics and Image Proc., 24, 255—269 (1983).
21. Lee Y.-H., Fam Adly T. An edge gradient enhancing Adaptive order statistic filter. IEEE Trans., May 1987, ASSP-35, N 5, 680—695 (1987).
22. Lukin V. V., Kurekin A. A., Melnik V. P., Zelensky A. A. Application of order statistic filtering to multichannel radar Image Proc. Proc. of IS@T / SPIE Symposium on Electronic Imaging: Science and Technology, San Jose, CA, USA, Feb. 1995, 2424, 302—312 (1995).
23. Lukin V. V., Melnik V. P., Miao Zhenjiang, et al. Expert system for radar Image recognition / Filtering. Proc. MMET'94, 229—232 (Kharkov, 1994).
24. Lukin V. V., Melnik V. P., Pogrebniak A. B., et al. Digital adaptive robust algorithms for radar image filtering. J. Electronic Imaging, 5 (3), 410—421 (1996).
25. Lukin V. V., Melnik V. P., Pogrebniak A. B., Zelensky A. A. Techniques and algorithms of speckle noise reduction for One-Look SAR Images. Proc. EUSAR'96, Konigswinter, Germany, March 1996, 167—170 (1996).
26. Lukin V. V., Melnik V. P., Zelensky A. A., et al. Iterative Nonlinear filtering algorithm with Application to SAR and medical image processing. Proc. IEEE nordic signal Proc. Symp., Espoo, Finland, Sept. 1996, 299—302 (1996).
27. Lukin V. V., Miao Zhenjiang, Yuan Baozong. Multifrequency remote sensing radar images processing and analysis. Proc. IEEE TENCON'93, Beijing, China, Oct. 1993, 1042— 1045 (1993).
28. Lukin V. V., Ponomarenko N. N., Astola J. T., Saarinen K. Algorithms of image nonlinear adaptive filtering using fragment recognition by expert system. Proc. IS@T/SPIE Symp. electronic imaging: Science and technology, San Jose, CA, USA, 2662, 179—190 (SPIE, 1996).
29. Lukin V. V., Ponomarenko N. N., Zelensky A. A., et al. Modified sigma filter for processing of images corrupted by multiplicative and impulsive noises. Proc. EUSIPCO'96, Trieste, Italy, Sept. 1996, Vol. III, 1909—1912 (1996).
30. Nieminen A., Heinonen P., Neuvo Y. A New class of detail-preserving filters for image processing. IEEE Trans. Jan. 1987, PAMI-9, N 1, 74—90 (1987).
31. Pitas I., Venetsanopoulos A. N. Nonlinear digital filters: Principles and applications, 392 p. (Kluwer, New York, 1990)
32. Pratt W. K. Digital image processing, Second ed., 698 p. (John Wiley @ Sons, Inc., New York, 1991).
33. Restrepo A., Bovik A. C. Adaptive trimmed filter for image restoration. IEEE Trans., ASSP-36, N 8, 1326—1337 (1988).
34. Russo F., Ramponi G. Introducing a fuzzy median filter. Proc. EUSIPCO'94, Signal Proc. VII: Theories and Applications, 963—966 (Edinburgh, UK, 1994).
35. Sun T. Design of Order statistic based filters for image processing applications: Thesis for the Degree of Doctor of Technology, 146 p. (Tampere, 1994).
36. Szekielda K.-H. Satellite monitoring of the Earth, 326 p. (Wiley, New York, 1989).
37. Taguchi A., Meguro M. Adaptive L-filters based on fuzzy rules. Proc. IS@T/SPIE Symp. Electronic imaging: Science and Technology, San Jose, CA, USA, Feb. 1995, 2424, 76— 84 (1995).
38. Zelensky A., Kurekin A., Lukin V., Ponomarenko N. Techniques of scene radar image processing and their recognition by expert system. Signal / Image Processing and Pattern Recognition: Proc. Second All-Ukrainian Inter. Conf., 163—167 (Kiev, 1994).

39. Zelensky A. A., Lukin V. V., Melnik V. P., et al. Airborne multichannel remote sensing data processing techniques and software. Proc. Second Airborne Remote Sensing Con. and Exhibition, San Francisco, CA, USA, June 1996, Vol. III, P. III-151—III-159 (1996).