Nonlinear mechanism of the generation of lower hybrid waves in cosmic plasmas
Heading:
1Yukhimuk, AK, 2Fedun, VN, 3Yukhimuk, VA, 2Fal'ko, OG, 1Sirenko, EK 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 3Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Newcastle University , Newcastle, Australia |
Kosm. nauka tehnol. 1998, 4 ;(5):41–45 |
https://doi.org/10.15407/knit1998.05.041 |
Publication Language: Russian |
Abstract: A new nonlinear mechanism of the generation of kinetic Alfven waves and lower hybrid waves in magnetized plasma with a small plasma parameter (β =8πnT/B0 2<1) is investigated. The parametric instability, where the whistler wave is the pumping wave, is considered as the generation mechanism. Two-fluid magnetohydro-dynamics is used for describing the nonlinear parametric interaction of waves. A nonlinear dispersion equation for the coupling of the lower hybrid and kinetic Alfven waves is found. We defermined also the instability growth rate у and the amplitude threshold value for the pump wave. The investigation suggests that taking into account the kinetic effects in the Alfven waves (the finite ion Larmour radius and the electron inertia length) is essential for parametric interaction of waves. It is well known that whistlers modes are use for additional plasma heating. The idea of plasma heating throunh the parametric decay implies that the energy is transmitted to plasma from waves. Very often the products of the decay can be absorb more effectively than the pump wave itself. Thus the kinetic Alfven waves interact actively with plasma particles and heat the plasma. The lower hybrid waves also interact actively with ions and increase their energy component perpendicular to the external magnetic field. They may be responsible for the temperature anisotropy and acceleration of heavy ions. Our results are used for analyzing experimental data for cosmic plasmas.
|
Keywords: atmospheric physics, cosmic plasmas, mechanisms of waves generation |
References:
1. Sazhin S. S. Natural Radio Emissions in the Earth's Magnetosphere, 155 p. (Nauka, Moscow, 1982) [In Russian].
2. Yukhimuk A. K., Fal'ko O. G., Yukhimuk V. A., et al. Nonlinear interection of alfven waves and ionic acoustic waves in a magnetized plasma. Kosm. nauka tehnol., 2 (3-4) 44—48 (1996) [in Russian].
https://doi.org/10.15407/knit1996.03.044
https://doi.org/10.15407/knit1996.03.044
3. Barrington R. E., Berlose G. S. Preliminary results from the very-low-frecuency reciver on board Canadas Alouette satellite. Nature, 198, 651—656 (1963).
https://doi.org/10.1038/198651a0
https://doi.org/10.1038/198651a0
4. Bell T. F., Inan U. S., Lauben D., et al. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves. Geophys. Res. Lett., 21 (8), 653—656 (1994).
https://doi.org/10.1029/94GL00196
https://doi.org/10.1029/94GL00196
5. Berger R. L., Chen L. Exitation of fast waves by slow waves near the lower-hybrid frecuency. Phys. Fluids, 19, 1392—1399 (1976).
https://doi.org/10.1063/1.861643
https://doi.org/10.1063/1.861643
6. Brice N. M., Smith R. L. Recordings from satellite Alouette-2-A very low frecuency plasma resonance. Nature, 203, 926—927 (1964).
7. Bujarbarua S., Shukla P. K. Exitation of ULF and VLF waves in the ionosphere. Planet. Space Sci., 28, 1051 — 1058 (1980).
https://doi.org/10.1016/0032-0633(80)90052-5
https://doi.org/10.1016/0032-0633(80)90052-5
8. Gurnett D. A. A satellite study of VLF hiss. J. Geophys. Res., 71 (23), 5599—5615 (1966).
https://doi.org/10.1029/JZ071i023p05599
https://doi.org/10.1029/JZ071i023p05599
9. Guha S., Sarkar R. Parametric decay of a whistler wave at the difference frecuency of two electromagnetic waves in a plasma. J. Plasma. Physics, 47 (1), 115—123 (1991).
https://doi.org/10.1017/S0022377800015531
https://doi.org/10.1017/S0022377800015531
10. Leyser T. B. Parametric interaction between hybrid and low hybrid waves in heating experiments. Geophys. Res. Lett., 18 (3), 408—411 (1991).
https://doi.org/10.1029/91GL00136
https://doi.org/10.1029/91GL00136
11. Murtaza G., Shukla P. K. Nonlinear generation of electromagnetic waves. J. Plasma Phys., 31, 423—436 (1984).
https://doi.org/10.1017/S0022377800001756
https://doi.org/10.1017/S0022377800001756
12. Scarf F. L., Fredrics R. W., Smith E. J. et al. OGO-5 observations of LHR noise emissions and wistlers near the plasmapause at several Earth radii during a large magnetic storm. J. Geophys. Res., 77 (10), 1776— 1793 (1972).
https://doi.org/10.1029/JA077i010p01776
https://doi.org/10.1029/JA077i010p01776
13. Shukla P. K., Stenflo L. Nonlinear Alfven waves. Physica Scripta, 60, 32—35 (1995).
https://doi.org/10.1088/0031-8949/1995/T60/004
https://doi.org/10.1088/0031-8949/1995/T60/004
14. Shukla P. K., Mamedow M. A. Nonlinear decay of a propagating lower-hybrid wave in a plasma. J. Plasma Physics, 19 (1), 87—96 (1978).
https://doi.org/10.1017/S0022377800023679
https://doi.org/10.1017/S0022377800023679
15. Stenflo L. Simulated scattering of large amplitude waves in the ionosphere. Physica Scripta, 30, 166—169 (1990).
https://doi.org/10.1088/0031-8949/1990/T30/022
https://doi.org/10.1088/0031-8949/1990/T30/022
16. Yukhimuk A. K., Kotsarenko N. Ya., Yukhimuk V. A. Nonlinear interaction of Alfven waves in solar atmosphere. Stydy of the Solar-Terrestrial system: Proc. 26th ESLAB Symp., Killarny, 16—19 June 1992, 337—341 (Noordwijk, 1992).