Simulation of the influence of atomic oxygen upon spacecraft materials

1Abraimov, VV
1B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 1998, 4 ;(5):99–104
https://doi.org/10.15407/knit1998.05.099
Publication Language: Russian
Abstract: 
We describe a system which is intended for ground-based accelerated simulation of continuous atomic oxygen beams with the energy E = 5 eV (this corresponds to the spacecraft velocity 8 km/s). The system is based on a new method for generating atomic oxygen with flows of particles in the interval 10 < j < 1017 particle/(cm2s). The oxygen atom velocity 8 km/s (E = 5 eV) is achieved with the gas-dynamic method. In the ground-based simulator the dissociation of a supersonic flow of oxygen molecules O2 to the oxygen atoms occurs under the influence of the vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the wavelength range λ= 110 ... 400 nm. These processes are adequate to the processes going on in the upper strata of the Earth's atmosphere at the altitudes 200- 1000 km under the solar irradiation. Complex studies and tests are planned to investigate the effect of atomic oxygen flows on spacecraft surface, the degradation of the physicomechanical properties of the materials used in space systems operating at the heights H = 200-1000 km (e.g., orbital stations of the "Alpha" type), as well as series of small satellites with lifetimes of 10-20 years.
Keywords: degradation of the physicomechanical properties, space instruments, spacecraft surface
References: 
1. Abraimov V. V., Negoda A. A., Zavalishin A. P., Kolybaev L. K. Complex imitation of outer space factors. Kosm. nauka tehnol., 1 (2-6), 76—80 (1995) [in Russian].
https://doi.org/10.15407/knit1995.02.076
2. Verkin B. I., Verkhovtseva E. T., Fogel' Ya. M. Gas jet vacuum ultraviolet radiation source. In: Physics of vacuum ultraviolet radiation, 38—58 (Nauk. dumka, Kiev, 1974) [in Russian].
3. Kudryavtsev N. N., Mazyar O. A., Sukhov A. M. Methods of generation of the atomic oxygen beams (Review), Pribory i Tekhnika Eksperimenta, No. 1, 31—48 (1994) [in Russian].
4. Nikitin E. E., Smirnov B. M. Slow atomic collisions, 254 p. (Enertgoatomizdat, Moscow, 1990) [in Russian].
5. Abraimov V. V., Negoda A. A., Zavalishin A. P., et al. A complex outer space simulator. Proc. Fourth Ukraine-Russia-China Symp. on Space Sciense and Technology, Kyiv, September 12—17, 1996, Vol. II, 530—533 (Kyiv, 1996).
6. Arnold G. S., Peplinski D. R., Cascarano F. M. In: J. Spacecraft and Rockets, 24 (5), 454—458 (1987).
https://doi.org/10.2514/3.25938
7. Caledonia G. E., Krech R. H. Energetic oxygen atom material degradation studies. AIAA Paper, N 105,  1 — 11 (1987).
8. Cross J. B., Cremon D. A. Atomic oxygen surface interactions — mechanistic study using ground-based facilities. AIAA Paper, N 0473, 17 p. (1985).
9. Cross J. B., Spangler L. H., Haffbauer M. A., Archuleta F. A. High intensity 5 eV CW-laser sustained O-atom exposure facility for material degradation studies. SAMPE Quarerly, 18, P. 41 (1987).
10. Dauphin G. Atomic oxygen — a low orbit plague. Proc. 8-th Int. Conf. Soc. Adv. Mater. And Process. Eng. Eur. Chapfer, La Baule, May 18—21, 1987, P. 345—368 (Amsterdam e. a., 1987).
11. Leger L. J., Visentine J. T., Schliesing J. A. A consideration of atomic oxygen interactions with space station. AIAA Paper, N 0476, 1 — 11 (1985).
12. Sibener S. J., Buss R. J., Ng C. Y., Lee Y. T. Development of a supersonic O/3P-J/ O/1D2/ atomic oxygen nozzle beam source. Rev. Sci. Instrum., 51 (2), 167—170 (1980).
https://doi.org/10.1063/1.1136170
13. Singh B., Amore L. J., Sailor W., Racete G. Laboratory simulation of low earth orbital atomic oxygen interaction with space-craft surfaces. AIAA Paper, N 0477, 7 p. (1985).
14. Walther S. R., Leung K. N., Kunkel W. B. Development of low energy oxygen ion beams for surface studies. J. Appl. Phys., 60 (9), 3015—3017 (1986).
https://doi.org/10.1063/1.337755