Tomographic processing of onboard photometric measurements
Heading:
1Konovalenko, OS, 1Ivchenko, VM, 1Lapchuk, VP 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine |
Kosm. nauka tehnol. 2000, 6 ;(2):13–20 |
https://doi.org/10.15407/knit2000.02.013 |
Publication Language: Ukrainian |
Abstract: Defining the location and structure of airglow needs tomographic data processing of photometric measurements. The Cormack inversion is used for tomographic reconstruction of airglow. Both the observed function of column brigthness and the volume emission rate function of airglow may be expanded in a Fourier series. The inversion allows the Fourier coefficients of volume emission rate function to be obtained using the Fourier coefficients of the observed function of column brigthness. The software was developed, and a numerical simulation of onboard observations and their tomographic processing was made.
|
Keywords: Cormack inversion, structure of airglow, tomographic data processing |
References:
1. Kotsarenko N. Ya., Korepanov V. E., Ivchenko V. N. Investigations of the ionospheric precursors of earthquakes project "Poperedzhennya". Kosm. nauka tehnol., 1 (1), 96—99 (1995) [in Ukrainian].
2. Cho Z. H. Computerized Tomography. Encyclopedia of Physical Science and Technology. — London: Acad. press., 1987.—Vol. 3.—P. 507.
3. Kunitake M., Ohtaka K. Tomographic imaging of the ionosphere over Japan by the modified truncated SVD method. Ann. Geophysicae, 13, 1303—1310.
4. Fesen C., Hays P. Two-dimensional technique for satellite airglow data. Appl. Opt., 21, P. 3784 (1982).
https://doi.org/10.1364/AO.21.003784
https://doi.org/10.1364/AO.21.003784
5. Cormack A. M. Representation of a Function by its Line Integrals with Some Radiological Applications. J. Appl. Phys., 34, P. 2722 (1962).
https://doi.org/10.1063/1.1729798
https://doi.org/10.1063/1.1729798
6. Cormack A. M. Representation of a Function by its Line Integrals with Some Radiological Applications II. J. Appl. Phys., 35, P. 2906 (1964).
https://doi.org/10.1063/1.1713127
https://doi.org/10.1063/1.1713127
7. Solomon S. C., Hays P. B. Tomographic Inversion of Satellite Photometry. Appl. Opt., 23, P. 3409 (1984).
https://doi.org/10.1364/AO.23.003409
https://doi.org/10.1364/AO.23.003409
8. Eberly D. The Magic of 3D Worlds: A Practical Approach to Real-Time Computer Graphics. Morgan-Kaufmann Publishers, San Francisco, CA. To appear, March 2000. Or article «Quadratic Interpolation of Meshes» on http://www.magic-software.com/gr_intp.htm/meshintp.pdf
9. Sutton E., Na H. A Block Iterative Algorithm for Tomographic Reconstruction of Ionospheric Electron Density. Department of Electrical and Computer Engineering, Univ. of Iowa. Preprint to appear in Int. J. Imag. System Technol. (1996). Retrieved from: http://www.icaen.uiowa.edu/~ecsutton/cit/cit.html.
10. Frey H., Frey S., Larson D., Nygren T., Semeter J. Tomographic methods for magnetospheric applications. Science Closure and Enabling Technologies for Constellation Class Missions, eds. V. Angelopoulos and P. V. Panetta (Berkeley), 72—77 (1998) . Retrieved from: http://sprg.ssl.berkeley.edu/ atmos/publi-cation/constellation.html oman","serif"; mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:RU; mso-fareast-language:RU;mso-bidi-language:AR-SA'>4, 1267—1271 (1995).