Modification of ionospheric plasma in the near Rf field of a dipole antenna: active experiment in space

1Baranets, NV, 2Afonin, VV, 3Gladyshev, VA, 1Sobolev, Ya.P, 4Komrakov, GP
1Pushkov Institute of Terrestrial Magnetism, Ionosphere and Propagation of Radio Waves of the Russian AS, Troitsk, Russia
2Space Research Institute of the Russian AS, Moscow, Russia
3Earth Physics Institute of O.Yu. Schmidt of the Russian AS, Moscow, Russia
4Scientific and Research Radio Physical Institute, Nizhny Novgorod, Russia
Kosm. nauka tehnol. 2000, 6 ;(5):35-48
Publication Language: Russian
Experimental results of the sounder accelerated charged particles (SAP) and perturbed plasma density recorded in the near satellite region are considered. Ion acceleration after rf pulses (τ ≥ 0) is related to the self-similar plasma expansion into a vacuum (region 2) to negatively charged body. The boundary «plasma-sheath» stability (in region 3) during an rf pulse is also considered relative to the LF fluctuation of plasma density. The first observations of the ion flux at the electron cyclotron harmonics ce. (n = 1, 2, ...) as well as the electron flux in the frequency range of ω0 = nωce - 0z vz |, n = 1, 2, ..., 5 (z II B0) are registered on Cosmos-1809 satellite. It is suggested that the acceleration of ions can be explained by the resonance increase of «Miller force» ~ V|E2 (r, z)|2ω0/ (ω0 ce ).
Keywords: active experiment, Cosmos-1809, near satellite plasma
1. Baranets N. V., Afonin V. V., Gladyshev V. A., et al. Electron Acceleration at Electron Cyclotron Frequency Harmonics under the Effect of Radio-Frequency Emission from the Kosmos-1809 Satellite. Kosmicheskie Issledovaniya, 33 (2), 118—127 (1995) [in Russian].
2. Baranets N. V., Afonin V. V., Komrakov G. P., Vasil’ev G. V. Effect of HF Emission on Ionospheric Plasma in Antenna Resonance Region aboard the "Cosmos-1809" Satellite, Kosmicheskie Issledovaniya, 33 (2), 40—51 (1995) [in Russian].
3. Bunkin F. V. On Radiation in Anisotropic Media. Zhurn. jeksperim. i teoret. fiziki, 32 (2), 338—346 (1957) [in Russian].
4. Galperin Iu. I., Sagdeev R. Z., Shuiskaia F. K., et al. Observation of electron acceleration in the ionospheric plasma near local plasma frequency by emission from a high-power onboard radio transmitter aboard the Intercosmos-19 satellite. Kosmicheskie Issledovaniia, 19 (1), 34—44 (1981) [in Russian].
5. Gaponov A. V., Miller M. A. On the use of the moving high frequency potential pits for the acceleration of the charged particles. Zhurn. jeksperim. i teoret. fiziki, 34 (3), 751—752 (1958) [in Russian].
6. Gaponov A. V., Petelin M. I., Yulpatov V. K. The induced radiation of excited classical oscillators and its use in high-frequency electronics. Izv. vuzov. Radiofizika, 10 (9-10), 1414—1453 (1967) [in Russian].
7. Getmantsev C. G., Denisov N. G. Concerning an Effect During Measurement of Electron Concentration in the Ionosphere by the Antenna Probe Method. Geomagnetizm i Aeronomiia, 2 (4), 691—693 (1962) [in Russian].
8. Ginzburg V. L. Radiation from an electron moving near a dielectric. Dokl. AN SSSR, 56 (2), 145—148 (1947) [in Russian].
9. Gurevich A. V., Pariiskaya L. V., Pitaevskii L. P. Self similar motion of a rarefied plasma. Zhurn. eksperim. i teoret. fiziki, 49 (8), 647—654 (1965) [in Russian].
10. Demirkhanov R. A., Gutkin T. I., Lozovsky S. N. Drejfovaja neustojchivost' besstolknovitel'noj plazmy v vysokochastotnom  pole £-volny Zhurn. eksperim. i teoret. fiziki, 55 (6), 2195—2199 (1968) [in Russian].
11. Zheleznyakov V. V. O girorezonansnom izluchenii i pogloshhenii v ravnovesnoj magnitoaktivnoj plazme. Izv. vuzov. Radiofizika, 7 (1), 67 (1964) [in Russian].
12. King R., Smith G. Antennas in material mediums. (Mir, Moscow, 1984) [in Russian].
13. Kondrat'ev I. G., Miller M. A. Two-dimesional electromagnetic fields guided by plasma layers. Izv. vuzov. Radiofizika, 8 (1), 34—41 (1965) [in Russian].
14. Mareev E. A., Chugunov Yu. V. Antennas in Plasma. (IAP Academy of Sciences of the USSR, Nizhny Novgorod, 1991) [in Russian].
15. Miller M. A. Motion of charge particles in a high-frequency electromagnetic field. Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1 (3), 110—123 (1958) [in Russian].
16. Mikhailovsky A. B. Reviews of Plasma Physics, Vol. 3, P. 141 (Gosatomizdat, Moscow, 1963) [in Russian].
17. Serov A. A., Gal'perin Yu. I., Lisakov Yu. V., Shuiskaya F. K. Local acceleration of electrons of the plasma near a satellite by the radio emission of a powerful on-board transmitter. Kosmicheskie Issledovaniia, 23 (3), 431—443 (1985) [in Russian].
18. Fainberg Ya. B., Shapiro V. D. Stabilization of Low-frequency Plasma Instabilities. ZhETF. Pisma, 4 (1), 32—35 (1966) [in Russian].
19. Shurygin R. V., Yushmanov P. N. Ion heat transfer during cyclotron heating in a tokamak. Fizika Plazmy, 12 (5), 535—545 (1986) [in Russian].
20. Eidman V. Ia. Instability of quasi-static potential oscillations of a thin conductor, around which a plasma flows Izv. Vyssh. Uchebn. Zaved., Radiofizika, 22 (7), 781—788 (1979) [in Russian].
21. Bissell R. C., Johnson P. C. The solution of the plasma equation in plane parallel geometry with a Maxwellian source. Phys. Fluids, 30 (3), 779—786 (1987).
22. Emmert G. A., Henry M. A. Electric sheath and presheath in a collisionless finite ion temperature plasma. J. Appl. Phys., 71 (1), 113—119 (1992).
23. Emmert G. A., Wieland R. M., Mense A. T., Davidson J. N. Electric sheath and presheath in a collisionless finite ion temperature plasma. Phys. Fluids, 23 (4), 803—812 (1980).
24. Freund H. P., Jackson R. H., Pershing D. E., Taccetti J. M. Nonlinear theory of the free-electron laser based upon a coaxial hybrid wiggler. Phys. Plasmas, 1 (4), 1046— 1059 (1994).
25. Galejs J. Impedance of a finite insulated cylindrical antenna in a cold plasma with a longitudinal magnetic field. IEEE Trans, on Antennas and Propagation, AP—14 (6), 727—736 (1966).
26. Galejs J. Impedance of a finite insulated cylindrical antenna in a cold plasma with a perpendicular magnetic field. IEEE Trans. on Antennas and Propagation, AP—14 (6), 737—748 (1966).
27. Goeckner M. J., Goree J., Sheridan T. E. Measurements of ion velocity and density in the plasma sheath. Phys. Fluids, B 4 (6), 1663—1670 (1992).
28. Gottscho R. A., Burton R. H., Flamm D. L., et al. Ion dynamics of rf plasmas and plasma sheaths: A time-resolved spectroscopic study. J. Appl. Phys., 55 (7), 2707—2714 (1984).
29. James H. G. Sounder-accelerated particles observed on «ISIS». J. Geophys. Res., 88 (A5) 27—40.
30. James H. G. Discharge of RF-induced spacecraft potential by positive ions. Planet. Space Sci., 35 (1), 105—118 (1987).
31. Laframboise J. G., Rubinstein J., Palmer F. H. Theory of topside sounder transmission effects on antenna quasistatic sheath impedance. Radio Sci., 10 (8,9), 773—784.
32. Pierce G. P. Limiting currents in electron beam in the presence of ions. J. Appl. Phys., 15 (4), 721—726 (1944).
33. Procassini R. J., Birdsall C. K., and Morse E. C. A fully kinetic, self-consistent particle simulation model of the collisionless plasma-sheath region. Phys. Fluids, B 2 (12), 3191—3205 (1990).
34. Pulinets S. A., Selegey V. V. Ionospheric plasma modification in the vicinity of a spacecraft by powerful radio pulses in topside sounding. J. Atmos. Terr. Phys., 48 (2), 149—157 (1986).
35. Shuiskaya F. K., Galperin Yu. I., Serov A. A., et al. Resonant heating of the ionospheric plasma by powerful radiopulses aboard the «Intercosmos-19» and «Cosmos-1809» satellites. Planet Space Sci., 38 (2), 173—180 (1990).

36. Wu T. T. Introduction to linear antennas. In: Antenna Theory, Part 1 (McGraw-Hill, New York, 1969).