Contact diagnostics of the ionosphere and laboratory plasma

1Shuvalov, VA, 2Priymak, AI, 2Reznichenko, NP, 1Tokmak, NA, 2Kochubei, GS
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(2-3):003-015
Publication Language: Russian
Methodology and apparatus for diagnostics of supersonic flows of the ionosphere and laboratory plasma are developed. It is confirmed by an experimental approach that the application of pressure probes and Langmuir probes allows one to determine about all the main kinetic parameters of the neutral and charged components of non-equilibrium rarefied plasma flows in the ionosphere and on a bench.
Keywords: ionosphere and laboratory plasma, kinetic parameters, probe
1. Alfvén H., Fälthammar C.-G. Cosmical Electrodynamics: Fundamental Principles, 260  p. (Mir, Moscow, 1967) [in Russian].
2. Al'pert Ya. L., Gurevich A. V., Pitaevskij L. P. Artificial satellites in low-density plasma, 384 p. (Nauka, Moscow, 1964) [in Russian].
3.  Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere Handbook, 509 p.  (Gidrometeoizdat, Leningrad, 1991) [in Russian].
4. Boid R. Lengmyur’s probes by the spaceship. In: Plasma research methods, Ed. by W. Lochte-Holtgrewen, 506—568 (Mir, Moscow, 1971) [in Russian].
5. Gurevich A. V., Shvartsburg A. V. Nonlinear theory of propagation of radio waves in the ionosphere, 272 p. (Nauka, Moscow, 1973) [in Russian].
6. Kaminsky M. Atomic and Ionic Collisions at the Metal Surface, 507 p. (Mir, Moscow, 1967) [in Russian].
7. Kil R. E. The theory of an electrical probe spherical shape in the free-flow mode [Teorija jelektricheskogo zonda sfericheskoj formy v rezhime svobodnomolekuljarnogo obtekanija]. Raketnaja tehnika i kosmonavtika, 7, 210—213 (1971) [in Russian].
8. Koshmarov Yu. A., Ryzhov Yu. A., Svirshchevskii S. B. Experimental Methods of Rarefied Gas Mechanics, 200 p. (Mashinostroenie, Moscow, 1981) [in Russian].
9. Kucherenko E. T. Handbook of Physical Principles of Vacuum Technology, 263 p. (Vyshcha Shkola, Kiev, 1981) [in Russian].
10. Lenert B. Space Plasma and laboratory scales. In: Plasma physics and magnetohydrodynamics, 65—134 (Izd-vo inostr. lit., Moscow, 1961) [in Russian].
11. Vernov S. N. (Ed.) A Model of Outer Space (Cosmos Model-82), vol. 2, 770 p. (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
12. Moskalenko A. M. Contribution to the theory of the cylindrical probe. Kosmicheskie Issledovaniia, 17 (1), 51—59 (1979) [In Russian].
13. Sutton G. W., Sherman A. Engineering Magnetohydrodynamics, 492 p. (Mir, Moscow, 1968) [in Russian].
14. Smirnova V. V. To the hot probe and probe photo theory. Geomagnetism and Aeronomy, 6 (2), 276—283 (1966) [in Russian].
15. Filippov B. V. Aerodynamics bodies in the upper atmosphere [Ajerodinamika tel v verhnih slojah atmosfery], 126 p. (LGU, Leningrad, 1973) [in Russian].
16. Shuvalov V. A. Modeling the interaction of bodies with the ionosphere, 180 p. (Nauk. dumka, Kiev, 1995) [in Russian].
17. Shuvalov V. A. On investigation of the parameters of a low density nonequilibrium plasma by using a thermoanemometer-langmuir probe. Inzh.-fiz. zhurn., 17 (6), 1050—1057 (1969) [in Russian].
18. Shuvalov V. A., Gubin V. V. Determination of the degree of nonisothermality of rarefied plasma flows by probe methods. Teplofizika Vysokikh Temperatur, 16 (4), 688—692 (1978) [in Russian].
19. Shuvalov V. A., Kochubey G. S., Priymak A. I., et al. Simulation of Radiative Electrization of Spacecraft leeward surfaces in the Ionosphere. Kosm. nauka tehnol., 7 (5-6), 30—43 (2001) [in Russian].
20. Shuvalov V. A., Priimak A. I., Churilov A. E., Reznichenko N. P. Inverse-Magnetron Converter for the Diagnostics of a Partially Ionized Gas Flow, Pribory i Tekhnika Eksperimenta, 44 (2), 106—108 (2001) [in Russian].
21. Shuvalov V. A., Churilov A. E., Turchin V. V. Diagnostics of a stream of rarefied plasma using sounding and UHF methods. Teplofizika Vysokikh Temperatur, 16 (1), 9—12 (1978) [in Russian].
22. Bellinger R. T., Chen A. A. An end effecl associated wilh cylindrical probe moving al satellite velocities. J. Geophys. Res., 73 (7), 2311—2528 (1968).
23. Godard R., Laframboise J. Tolal currenl to cylindrical collectors in collisionless plasma. Planet. Space Sci., 31 (3), 275—283 (1983).
24. Goel S. K., Gupla P. D., Bhavwalkar B. V-I characteristics of a plane disk probe in collisionless slreaming plasmas. J. Applied Phys., 53 (4), 2971—2974 (1982).
25. Laframboise J. Theory of spherical and cylindrical Langmuir probes in a collisionless plasma al resl. Rarefied Gas Dynamics, Vol. 2, 22—44 (Acad. Press, N. Y., 1965).
26. Makita H., Kuriki K. Currenl collection by spherical Langmuir probes drifting in a colleclionless plasma. Phys. Fluids, 21 (8), 1279—1286 (1978).
27. Martin A. B. SpacecrafI/plasma interactions and eleclromag-nelic effecls in LEO and polar orbils. ESA Report conlracls N 7989/88/NL/PB(SC), 325 p. (Abington Oxon, UK, 1990).
28. Mott-Smith H., Langmuir I. The theory of collectors in gaseous discharges. Phys. Rev., 28 (4), 727—763 (1926).
29. Newton G., Silverman P., Pelz D. Interactions between a hypersonic neutral gas and an orificed pressure gauge mounted in a spinning satellite. Rarefied Gas Gynamics, Vol. 2, 1571 — 1573 (Acad. Press, N. Y., 1969).
30. Sanmartin J. R. End effect in Langmuir probe response under ionospheric satellite conditions. Phys. Fluids., 15 (6), 1134—1143 (1972).
31. Segall S. B., Koopman D. W. Application of cylindrical Langmuir probes to streaming plasma diagnostics. Phys. Fluids, 16 (7), 1149—1156 (1973).
32. Taillet J., Brunei A., Fournier G. Behavior of a positive probe in high-speed collection-free plasma flow. Dynamic ionized gases, 317—328 (Tokio, 1973).