Monoblock constructions of on-board and field hyperspectrometers

1Donets, VV, 2Tsymbal, AYu., 1Brovchenko, VV
1Corporation «Research and Production Enterprise «Arsenal», Kyiv, Ukraine
2«Mayak Plant, Open Joint-Stock Company, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(4):37–44
https://doi.org/10.15407/knit2012.04.037
Publication Language: Russian
Abstract: 
We consider monoblock constructions of field and on-board hyperspectrometers for the spectrometric study of the Earth’s surface and for the spectrometric data subsatellite validation. Some achievements in the device production which were tested in the hyperspectrometers AIS, ROSIS, CRISM, and AVIRIS of the first and second generations are implemented in new hyperspectrometers and other compact spectrometric devices for investigations of the Earth’s surface
Keywords: on-board hyperspectrophotometers, validation
References: 
1. Beleckij V. M., Krivov G. A. Aluminum alloys. The composition, properties, TECHNOLOGY, application. Directory, Ed. by I. N. Fridljander, 365 p. (KOMINTEH, Kiev, 2005) [in Russian] Retrieved from http://www.twirpx.com/file/231427/
2. Vinogradov D. V. High metal cutting, 301 p.  (Poligrafija, Moscow, 2003)  [in Russian] Retrieved from  http://tbmr.ru/wp-content/uploads/tech_doc/Vysokoproizv-ya_obr-ka_met-lo...
3. Dmitriev A. N., Shitov A. V. Introduction to GIS mapping: Training method. benefit. (Gorno-Altajskij State Univ., Gorno-Altajsk, 2001)  [in Russian] Retrieved from  http://www.gasu.ru/resour/eposobia/posob/7.html
4. Donets V.V. Substantiation of the Structure of hardware-software for remote sensing of vegetation in the field: Extended abstract of candidate’s thesis. 19 p. (Kyiv, 2010) [in Ukrainian].
5. Mal'chevskyj I. A. High-performance agriculture from the list of completed development agencies Sciences of Ukraine, created as part of the most important areas of research and development.  Main portal of the NAS of Ukraine: Innovation activity, 90—97 (Kyiv, 2011) [in Russian] Retrieved from http://www.nas.gov.ua/Activity/ InnovationActivity/Documents/5_8.pdf
6. Raguzin R. M. The principles of system design of optical devices: textbook, Pt. II, 282 p. (ITMO, St. Petersburg, 2006) [in Russian].
7. Annual Report of the National Space Agency of Ukraine for 2008, P. 16—17 (NSA Ukraine, Kyiv, 2008) [in Ukrainian] Retrieved from http:// www.nkau.gov.ua/pdf/NSAU_report_2008.pdf
8. Rees W. G.  Physical Principles of Remote Sensing, 336 p. (Tehnosfera, Moscow, 2006)  [in Russian].
9. Schowengerdt R.A. Remote Sensing. Models and Methods for Image Processing, 560 p. (Tehnosfera, Moscow, 2010) [in Russian].
10. Yatsenko V. O. Production spectrophotometer for field testing of vegetation. Main portal of the NAS of Ukraine: Innovation activity. (Kyiv, 2008) [in Ukrainian] Retrieved from  http://www.innovations.nas. gov.ua/Years/2008/802
11. Bergman S. M. The utility of hyperspectral data to detect and discriminate actual and decoy target vehicles.  (Lieutenant, United States Navy B. A., University of New Mexico, 1989) Retrieved from  http://www.nps.edu/faculty/olsen/Student_theses/bergman.pdf
12. Clark R. N., Boardman J., Mustard J., et al. Mineral mapping and applications of imaging spectroscopy.  IG-ARSS, (August 1, 2006) Retrieved from   http://web-docs.dow. wur.nl/internet/grs/Workshops/Environmen-tal_Applications_Imaging_Spectroscopy/9_Clark_Mineral/Clark_Mineral.pdf
13. CRISM (Compact Reconnaissance Imaging Spectrometer for Mars)  Retrieved from   http://crism.jhuapl.edu/instrument/innoDesign.php
14. Fay M. An analysis of hyperspectral imagery data collected during operation desert radiance. Naval Postgraduate School, Monterey, California. (1995) Retrieved from   http://www.nps.edu/faculty/olsen/Student_theses/Fay_Jun_1995.pdf
15. Goetz A. F. H., Vane G., Soloman J. E., Rock B. N. Imaging spectrometry of Earth remote sensing.  Science, 228 (4704), 1147—1153 (1985).
https://doi.org/10.1126/science.228.4704.1147
16.  Green R. O., et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer AVIRIS.  Remote Sens. Environ.,  65, 227—248 (1998).  Retrieved from   
17. Green R. O., Eastwood M. L., Sarture C. M., et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).  (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, C.A.) Retrieved from   http://trs-new.jpl.nasa.gov/dspace/ bitstream/ 2014/20277/1/98-1179.pdf
18. Hamlin L., Green R. O., Mouroulis P., et al. Imaging Spectrometer Science Measurements for Terrestrial Ecology: AVIRIS and the Next Generation AVIRIS Characteristics and Development Status.  (NASA Earth Science Technology Forum, Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, 2010).  Retrieved from   http://esto.nasa.gov/conferences/estf2010/ presentations/Hamlin_Green_ESTF2010_B4P4.pdf
19. Kim N., Schnatz G. The Airborne Imaging Spectrometer ROSIS.  (German Aerospace Center, Management System Standard, Schnieringshof, 2008).  Retrieved from   http://www.opairs.aero/media/download/pdf/rosis-description.pdf
20. Murchie S., et al. Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO).  J. Geophys. Res., 112 (2007).  Retrieved from   http://www.planetary.brown.edu/pdfs/ 3554.pdf
https://doi.org/10.1029/2006JE002682
21. Green R. O., et al. Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng).  (JPL Earth Science Airborne Program, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA).  Retrieved from   http://airbornescience.jpl.nasa.gov/avirisng/
22. ORIEL INSTRUMENTS MS125TM 1/8 m Spectrograph, 1/8 m, Grating and Slit Ordered Separately.  Retrieved from   http://search.newport.com/?x2=sku&q2=77400
23. Peschel Th., Damm Ch., Gebhardt A., et al. Opto-mechanical design of spectrometers. (Fraunhofer Institut Angewandte Optik und Feinmechanik). Retrieved from   http://spectronet.de/portals/visqua/ story_docs/vortraege_2008/080311_optical_spectrometer/ 080312_10_peschel_fhgiof.pdf
24. Sarture C. M., Chovit C. J., Faust J. A., et al. High Altitude Hyperspectral Remote Sensing with AVIRIS.  (Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, California).  Retrieved from   http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/ 33488/1/94-1397.pdf
25. Semeniv O., Yatsenko V., Khandriga P., Shatokhina I. A hypers pectrometer for remote sensing of biochemical components in the vegetation.  37th COSPAR Scientific Assembly, 13-20 July 2008, in Montreal, Canada, P. 2806.  Retrieved from   http://adsabs.harvard.edu/abs/2008cosp...37.2806S.
26. Sensor Systems of the NASA Airborne Science Program. Retrieved from   http://asap-data.arc.nasa.gov/sensors.doc.
27. Vane G., Goetz A. F. H., Wellman J. B. Airborne imaging spectrometer: a new tool for remote sensing.  Proc. 1983 Int’l. Geoscience and Remote Sensing Symp., IEEE Cat N 83 CH1837-4.
28. Vane G., Goetz A. F. H., Wellman J. B. Airborne Imaging Spectrometer: A new tool for earth remote sensing.  IEEE Trans, on Geoscience and Remote Sensing.  GE-22, 6,  546—549 (1984).
https://doi.org/10.1016/0034-4257(88)90003-X
29. Vane G., Goetz A. F. H. Terrestrial imaging spectroscopy.  Remote Sens. Environ., 24, 1—29 (1988).

30. ZEMAX: Software for Optical System Design. Retrieved from  http://www.zemax.com.