Low-threshold instabilities of kinetic alfven waves in the chromosphere of an active region on the Sun

1Kryshtal, AN, 2Gerasimenko, SV, 1Voitsekhovska, AD
1Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(5):29–40
Publication Language: Russian
We investigated the process of initiation and development of low-frequency wave instability in the plasma in the region near the foot-point of coronal loops which corresponds to the lower-

middle chromosphere. Our study was performed under the assumption of quasi-potential magnetic field of a single loop where its amplitude in a selected part of the current circuit of the loop varies from 30 to 100 gauss. As the main reasons for the instability development, we considered a weak large-scale electric field in a loop and slow drift motion of plasma due to the spatial inhomogeneity of its temperature and density. The identification of our solutions for the dispersion equation allowed us to determine the following. For two semi-empirical solar atmosphere models used in the calculation, MAVN F1 and MAVN F2M, the waves generated during the linear stage of instability development are kinetic Alfven waves. The distinctive features of the waves under investigation in preflare chromosphere of an active region are relatively low degree of non-isothermality of plasma which is necessary for the instability manifestation and low threshold of this instability with respect to the amplitude of subdreicer electric field in a loop �ичительными чертами исследованных волн в передспалаховій хромосфере активной области оказались относительно невысокая степень неизотермичности плазмы, необходимая для проявления неустойчивости и низкий порог этой неустойчивости по амплитуде субдрейсеровского электрического поля в петле

Keywords: coronal loops, kinetic Alfven waves, subdreicer electric field
1. Aleksandrov A. F., Bogdankevich L. S., and Rukhadze A. A. Principles of Plasma Electrodynamics, 424 p. (Vysshaya Shkola, Moscow, 1989) [in Russian].
2. Altyntsev A. T., Banin V. G., Kuklin G. V., Tomozov V. M. Solar bursts, 247 p. (Nauka, Moscow, 1982) [in Russian].
3.  Gopasjuk S. I. Structure and dynamics of the magnetic field in active regions on the Sun., Itogi nauki i tehniki, VINITI, Astronomy, 34, 6—77 (1987) [in Russian].
4. Griem H. R. Spectral line broadening by plasmas, 429 p. (Mir, Moscow, 1978) [in Russian].
5. Zaitsev V.V., Stepanov A.V., Tsap Yu.T. On the problems of physics of solar and stellar flares. Kinematics Phys. Celestial Bodies, 10 (6), 3—31 (1994) [in Russian].
6. Kryshtal O.N., Gerasymenko S.V. The generation of kinetic Alfvén waves in the loop's plasma in active regions, Kosm. nauka tehnol., 10 (4), 81—91 (2004) [in Russian].
7. Mihajlovskij A. B. The vibrations of an inhomogeneous plasma, Voprosy teorii plazmy. Is.3, 141—202 (Gosatomizdat, Moscow, 1963) [in Russian].
8. Mihajlovskij A. B. The theory of plasma instabilities. Instability of an inhomogeneous plasma. Vol. 2. Instability of an inhomogeneous plasma, 360 p. (Atomizdat, Moscow, 1975) (Vols. 1-2; Vol. 2) [in Russian].
9. Mishina A. P., Proskurjakov I. V. Higher algebra, 300 p. (Gos. izd-vo fiz.-mat. lit., Moscow, 1962) [in Russian].
10. Podgorny A.I., Podgorny I.M. Numerical MHD simulations of post-flare loop formation on the Sun. Allowing for thermal-conductivity anisotropy,  Astron. zhurn., 79 (1), 73— 80 (2002) [in Russian].
11. Reznikova V.Je., Mel'nikov V.F., Gorbikov S.P., Shibasaki K. Distribution of radio brightness along the flare loop.  Physics of plasma in the Solar system: Abstracts, Moscow, February 5—8, 2008, P. 17 (IKI RAN, Moscow, 2008) [in Russian].
12. Somov B. V., Titov V. S., Vernetta A. I. Magnetic reconnection in solar flares, Itogi nauki i tehniki, VINITI, Astronomy, 34, 136—237 (1987) [in Russian].
13. Aschwanden M. I. An evaluation of coronal heating models for active regions based on Yohkoh, SOHO and TRACE observations.  Astrophys. J., 560, 1035—1043 (2001).
14. Foukal P., Hinata S. Electric fields in the solar atmosphere: a rewiew. Solar Phys.,  132 (2), 307—334 (1991).
15. Hasegava A. Kinetic properrties of Alfven waves.  Proc. Indian Acad.Sci., 86A (2), 151—174 (1977).
16. Heyvaerts J., Priest E. R., Rust D. M. Models of solar flares.  Astrophys. J.,  216, 213—221 (1977).
17. Kryshtal A. N. Low-frequency wave instabilities in a plasma with a quasi-static electric field and weak spatial inhomogeneity.  J. Plasma Phys., 68 (2), 137—148 (2002).
18. Kryshtal A. N. Low-frequency wave instabilities in magnetoactive plasma with spatial inhomogeneity of temperature.  J. Plasma Phys., 71 (6), 729—745 (2005).
19. Kryshtal A. N., Gerasimenko S. V. Generation of low-frequency waves in post-flare loop’s plasma.  Proceedings of the SOLMAG 2002 «Magnetic Coupling of the Solar Atmosphere»: Euroconference and IAU Colloq. No.188 , Santorini, Greece, 11—15 June, 2002,  Ed. H. SawayaLacoste, P. 465—468 (ESA Publ. Division, Noordwijk, Netherlands, 2002).
20. Kryshtal A. N., Gerasimenko S. V. Slow magnetoacousticlike waves in post-flare loop.  Astron. and Astrophys., 420, 1107—1115 (2004).
21. Kryshtal A. N., Gerasimenko S. V., Voitsekhovska A. D. «Oblique» Bernstein modes in solar preflare plasma: Generation of second harmonics.  Advs in Space Res.,  49, 791—796 (2012).
22. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiempirical models of chromospheric flare regions. Astrophys. J., 242 (1), 336—351 (1980).
23. Miller I. A., Cargil P. I., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares.  J. Geophys. Res., 102A (7), 14631—14659 (1997).

24. Solanki S. K. Small-scale solar magnetic fields: an overview. Space Sci. Revs., 63, 1—183 (1993).