Application of transgenic Arabidopsis thaliana-GFP-ABD2 plants in experiments for the investigation of cytoskeleton in simulated microgravity

1Shevchenko, GV, 1Kordyum, ЕL
1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2012, 18 ;(6):51–56
Publication Language: Russian
Application of transgenic Arabidopsis thaliana-GFP-ABD2 plants in experiments for the study of simulated microgravity (clinorotation) impact on cytoskeleton revealed the interconnection of actin microfilaments with other cytoskeleton elements, in particular with tubulin microtubules. Investigations showed that interconnection between microfilaments and microtubules is essential for cell growth in the distal elongation zone of a root. The interconnection between cytoskeleton elements in the stationary control differs from that under clinorotation. Possible mechanism of such interconnection is discussed.
Keywords: cytoskeleton, microfilaments, simulated microgravity, transgenic Arabidopsis thaliana-GFP-ABD2 plants
1. Tairbekov M. G. Gravity cell biology (theory and experiment). 128 p. (Moscow, 1997) [in Russian].
2. Tairbekov M. G. Possible mechanisms of gravitational sensitivity of cells.  Dokl. Akad. nauk, 375 (1), 121 — 124  (2000) [in Russian].
3. Baluška F., Mancuso S., Volkmann D., Barlow P. W. Root apex transition zone: a signalling — response nexus in the root.  Trends Plant Sci., 15 (7), 402 — 408 (2010).
4. Baluška F., Volkmann D., Barlow P. A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications.  J. Plant Growth Regul., 20, 170—181 (2001).
5.  Blancaflor E. B. Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.). J. Plant Growth Regul., 19, 406—414 (2000).
6. Blancaflor E. B. The cytoskeleton and gravitropism in higher plants.  J. Plant Growth Regul., 21, 120—136 (2002).
7. Blancaflor E. B., Wang Y-S., Motes C. M. Organization and function of the actin cytoskeleton in developing root cells.  Int. Rev. Cytol., 252, 219—264 (2006).
8. Collings D., Lill A., Himmelspach R., Wasteneys G. Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana.  New Phytologist., 170, 275—290 (2006).
9. Fu Y., Gu Y., Zheung Z., Wasteneys G., Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell120, 687—700 (2005).
10. Higaki T., Sano T., Hasezawa S. Actin microfilament dynamics and actin side-binding proteins in plants.  Curr. Opin. Cell Biol., 10 (6), 549—556 (2007).
11. Kordyum E. L. Biology of plant cells in microgravity and under clinostating.  Int. Rev. Cytol., 171, 1—78 (1997).
12. Lang T., Wacker I., Wunderlich I., et al. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys. J., 78, 2863 —2877 (2000).
13. Li Ya., Shen Yu, Cai Ch., Zhong Ch., Zhu L., Yuan M., Rena H. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division.  Plant Cell,  22, 2710—2726 (2010).
14. Lloyd C. W., Chan J. Microtubules and the shape of plants to come.  Nat. Rev. Mol. Cell Biol.,  5, 13 —23 (2004).
15. Mancuso S., Marras A. M., Magnus V., Baluška F. Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode.  Analytical Biochemistry, 341, 344—351 (2005).
16. Muday G. K., Murphy A. S. An emerging model of auxin transport regulation.  Plant Cell, 14, 293— 299 (2002).
17. Petraśek J., Schwarzerova K. Actin and microtubule cytoskeleton interactions.  Curr. Opin. Plant Biol., 12, 728—734 (2009).
18. Saedler R., Mathur N., Srinivas B. P., et al. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog.  Plant Cell Physiol.,   45, 813—822 (2004).
19. Sampathkumar A., Lindeboom J., Debolt S., et al. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.  Plant Cell, 23, 2302—2313 (2011). 
20. Schwab B., Mathur J., Saedler R., et al. Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules.  Mol. Gen. Genomics, 269, 350—360 (2003).
21. Shevchenko G. Patterns of cortical microtubules formed in epidermis of Beta vulgarisroots under clinorotation.  Adv. Space Res., 24, 739—742 (1999).
22. Shevchenko G., Kalinina Ia., Kordyum E. L. Interrelation between microtubules and microfilaments in the elongation zone of Arabidopsisroot under clinorotation.  Adv. Space Res., 39, 1171—1175 (2007).
23. Smith L. G., Oppenheimer D. G. Spatial control of cell expansion by the plant cytoskeleton.  Annu. Rev. Cell Dev. Biol.,  21, 271—295 (2005).
24. Wang Y. S., Yoo C. M., Blancaflor E. B. Improved imaging of actin filaments in transgenic Arabidopsisplants expressing a green f luorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain.  New Phytol., 177, 525—536 (2008).
25. Wasteneys G., Galway M. Remodeling the cytoskeleton for growth and form: an overview with some new views.  Annu. Rev. Plant Biol., 54, 691—722 (2003).
26. Wasteneys G. O., Yang Z. New views on the plant cytoskeleton.  Plant Physiol., 136, 3884—3891 (2004).