Probe diagnostics of laboratory and ionospheric rarefied plasma flows
Heading:
1Shuvalov, VA, 2Lukenjuk, AA, 1Pismennyi, NI, 1Kulagin, SN 1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine 2L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine |
Kosm. nauka tehnol. 2013, 19 ;(1):13-19 |
https://doi.org/10.15407/knit2013.01.013 |
Publication Language: Russian |
Abstract: We developed a procedure and elaborated equations for the processing and analysis of output signals from the detectors of neutral particles, DN, and charged particles, DE, which are parts of the scientific devices of the spacecraft “Sich-2”. The procedure allows one to determine the complex main kinetic parameters of the spacecraft environment. |
Keywords: detectors of neutral and charged particles, kinetic parameters of the ionospheric plasma, spacecraft “Sich-2” |
References:
1. Alfvén H., Fälthammar C.-G. Cosmical Electrodynamics: Fundamental Principles, 260 p. (Mir, Moscow, 1967) [in Russian].
2. Baksht F. G., Djuzhev G. A., Cirkel' B. I. et al. Probe diagnostics of low-temperature plasma in a magnetic field. III. Electron saturation current probe characteristics. J. Technical Physics, 47(11), 2269—2279 (1977) [in Russian].
3. Boid R. Lengmyur’s probes by the spaceship. In Plasma research methods, Ed. by W. Lochte-Holtgrewen, 506—568 (Mir, Moscow, 1971) [in Russian].
4. Frolov B. S., Minajchev V. E., Aleksandrov A. T. et al. Vacuum equipment. Directory, 360 p. (Mashinostroenie, Moscow, 1985) [in Russian].
5. Gurevich A. V., Shvarcburg A. V. Nonlinear theory of propagation of radio waves in the ionosphere, 272 p. (Nauka, Moscow, 1973) [in Russian].
6. Dresvin S. V., Donskoj A. V., Gol'dfarb V. M., Klubnikin V. S. Physics and the low-temperature plasma equipment, 352 p. (Atomizdat, Moscow, 1972) [in Russian].
7. ECSS-E-10-04A. Space engineering: Space environment. [Standard] from 21 January 2000, 219 p. (ESTEC, Noordwijk, 2000).
8. Kozlov O. V. Plasma electric probe, 291 p. (Atomizdat, Moscow, 1969) [in Russian].
9. Kotel'nikov M.V. The current-voltage characteristics of a cylindrical probe in flows of collisional and collisionless plasma. High Temperature, 46 (4), 629-632 (2008) [in Russian].
https://doi.org/10.1134/s0018151x08040184
https://doi.org/10.1134/s0018151x08040184
10. Koshmarov Ju. A., Ryzhov Ju. A., Svirshhevskij S. B. Experimental methods in mechanics of rarefied gases, 200 p. (Mashinostroenie, Moscow, 1981) [in Russian].
11. Krinberg I. A. Kinetics of electrons in the ionosphere and magnetosphere of the Earth, 215 p. (Nauka, Moscow, 1978) [in Russian].
12. Lenert B. Space Plasma and laboratory scales, in Plasma physics and magnetohydrodynamics, P. 65—134 (Izd-vo inostr. lit., Moscow, 1961) [in Russian].
13. McDaniel E. W. Collision Phenomena in Ionized Gases, 832 p. (Mir, Moscow, 1967) [in Russian].
14. Massey H.S.W., Burhop E.H.S. Electronic and ionic impact phenomena. 567 p. (Izd-vo inostr. lit., Moscow, 1958) [in Russian].
15. Moskalenko A. M. By the theory of the cylindrical probe, Cosmic Research, 17(1), 51— 59 (1979) [in Russian].
16. Rajzer Ju. P. Physics of gas discharge, 592 p. (Nauka, Moscow, 1987) [in Russian].
17. Sutton G.W., Sherman A. Engineering Magnetohydrodynamics, 402 p. (Mir, Moscow, 1968) [in Russian].
18. Smirnova V. V. By the hot probe and probe photo theory, Geomagnetism and Aeronomy, 6 (2), 276—283 (1966) [in Russian].
19. Huxley L.G.H., Crompton R.W. The diffusion and drift of electrons in gases. 672 p. (Mir, Moscow, 1977) [in Russian].
20. Shott L. Electrical probes. In Plasma Diagnostics, Ed.by W. Lochte-Holtgreven, P.459—495. (Mir, Moscow, 1971) [in Russian].
21. Shuvalov V.A., Kochubei G.S., Priimak A.I., et al. Contact Diagnostics of High-Velocity Flows of Rarefied Plasma. High Temperature. 43(3), P.343—351 (2005) [in Russian].
https://doi.org/10.1007/s10740-005-0071-y
https://doi.org/10.1007/s10740-005-0071-y
22. Shuvalov V.A., Lazuchenkov D.N., Kochubei G.S., Nosikov S.V. A calorimetric probe diagnostics for neutral and charged components of a rarefied plasma flow, Instruments and Experimental Techniques, 53(3), P. 80—87 (2010) [in Russian].
https://doi.org/10.1134/S0020441210030127
https://doi.org/10.1134/S0020441210030127
23. Shuvalov V.A., Pismenny N.I., Priimak A.I., Kochubei G.S. Probe diagnostics of rarefied flows partially dissociated plasma, Instruments and Experimental Techniques, 50(3), P. 92—100 (2007) [in Russian].
https://doi.org/10.1134/S002044120703013X
https://doi.org/10.1134/S002044120703013X
24. von Engel A. Ionized gases, 332 p. (Fizmatgiz, Moscow, 1959) [in Russian].
25. Godard R., Laframboise J. G. Total current to cylindrical collectors in collisionless plasma flow, Planet. and Space Sci. 31 (3), 275—283 (1983).
https://doi.org/10.1016/0032-0633(83)90077-6
https://doi.org/10.1016/0032-0633(83)90077-6
26. Laframboise J. G., Sonmor L. J. Current collection by probes and electrodes in space magnetoplasma: A Review, J. Geophys. Res. 98 (A1), 337—357 (1993).
https://doi.org/10.1029/92JA00839
https://doi.org/10.1029/92JA00839
27. Lebreton J. P., Stverak S., Travnicek P., et al. The ISL Langmuir probe experiment processing on board DEMETER: Scientific objectives decription and first results, Plan. and Space Sci. 54, 472—486 (2006).
https://doi.org/10.1016/j.pss.2005.10.017
https://doi.org/10.1016/j.pss.2005.10.017
28. Szuszczewicz E. P., Takacs P. Z. Magnetosheath effects on cylindrical Langmuir probes, Phys. Fluids, 22 (12), 2424—2429 (1979).
https://doi.org/10.1063/1.862556
https://doi.org/10.1063/1.862556