Generation of kinetic ion-acoustic waves in preflare atmosphere of a solar active region

1Kryshtal, AN, 2Gerasimenko, SV, 1Voitsekhovska, AD
1Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2013, 19 ;(3):37–46
https://doi.org/10.15407/knit2013.03.037
Publication Language: Russian
Abstract: 

We investigated the process of rise and development of instability of low-frequency waves in plasma in the area near the foot-point of coronal loops which corresponds to the lowmiddle preflare chromosphere. The study was carried out under the assumption of the quasi-potential form of magnetic field of a single loop when its amplitude at a given part of current circuit changed from 1 to 3 mT. The existence of a weak large-scale electric field in the loop and slow drift motions of plasma due to spatial inhomogeneities of its temperature and density were considered as the main reasons of instability. The identification of the obtained solution of dispersive relation allowed us to establish that for semiempirical model of the solar atmosphere FAL the waves generated during the linear stage of instability development are kinetic ion-acoustic waves. The most important properties of the waves under consideration are a low degree of plasma nonisothermality which is necessary for the instability appearance and its extremely low threshold expressed in the units of the local dreicer field’s amplitude. Kinetic ion-acoustic waves which are generated as well as kinetic Alfven waves have their own longitudinal electric field. Due to this field all these waves can effectively accelerate charge particles in preflare atmosphere of a solar active region.

Keywords: kinetic ion-acoustic waves, plasma, solar coronal loops
References: 
1.  Aleksandrov A. F., Bogdankevich L. S., Ruhadze A. A. Fundamentals of plasma electrodynamics [Osnovy jelektrodinamiki plazmy], 424 p. (Vyssh. shk., Moscow, 1989) [in Russian].
2.  Gopasjuk S. I. Struktura i dinamika magnitnogo polja v aktivnyh oblastjah na Solnce, Itogi nauki i tehniki, VINITI, Astronomija, 34, 6—77 (1987) [in Russian].
3. Kryshtal O.N., Gerasymenko S.V. The generation of kinetic Alfvén waves in the loop's plasma in active regions, Kosm. nauka tehnol., 10 (4), 81—91 (2004) [in Russian].
4. Kryshtal A. N., Gerasimenko S. V., Voitsekhovska A. D. Low-threshold instabilities of kinetic Alfven waves in the chromosphere of an active region on the Sun, Kosm. nauka tehnol., 18 (5), 29—40 (2012) [in Russian].
https://doi.org/10.15407/knit2012.05.029
5. Mihajlovskij A. B. The vibrations of an inhomogeneous plasma [Kolebanija neodnorodnoj plazmy], Voprosy teorii plazmy. Is.3, 141—202 (Gosatomizdat, Moscow, 1963) [in Russian].
6. Mihajlovskij A. B. The theory of plasma instabilities.  Vol. 2. Instability of an inhomogeneous plasma. [Teorija plazmennyh neustojchivostej. Vol. 2. Neustojchivosti neodnorodnoj plazmy], 360 p. (Atomizdat, Moscow, 1975) (Vols. 1-2; Vol. 2) [in Russian].
7. Mishina A. P., Proskurjakov I. V. Supreme algebra, 300 p. (Gos. izd-vo fiz.-mat. lit., Moscow, 1962) [in Russian].
8. Somov B. V., Titov V. S., Vernetta A. I. Magnetic reconnection in solar flares, Itogi nauki i tehniki, VINITI, Astronomija, 34, 136—237 (1987) [in Russian].
9. Aschwanden M. I. An evaluation of coronal heating models for active regions based on Yohkoh, SOHO and TRACE observations, Astrophys. J., 560, 1035—1043 (2001).
https://doi.org/10.1086/323064
10. Aurass H. Radio type IV burst fine structures and the dynamics of flare process,  Proc. of the 144-th IAU Colloq. "Solar Coronal Structures",  Eds V. Rusin, P. Heinzel, I.-C.Vial, 251—256 (VEDA Publ. Company, Bratislava, 1993).
11. Brodin G., Stenflo L., Shukla P. K. Nonlinear interactions between kinetic and ion-sound waves,  Solar Phys., 236, 285—291 (2006).
https://doi.org/10.1007/s11207-006-0125-2
12. Charikov Yu. E. Preflare stage of energy accumulation: new observation and possible mechanisms,  Physical nature of solar activity and forecast of its geophysical manifestations, P. 138—139  (Book of Abstracts of the XI-th Pulkovo International Conference in Solar Physics) ( MAO of RAS, St.-Petersburg, 2007).
13. Chen F. F. Introduction to Plasma Physics and Controlled Fusion. Vol. 1. Plasma Physics, 421 p. (Plenum Press, New York, London, 1983).
14. Farnik F., Savy K. Soft X-ray pre-flare emission studied in Yohkoh-SXT images,  Solar Phys., 183 (1), 339—357 (1998).
https://doi.org/10.1023/A:1005092927592
15. Fontenla J. M., Avrett E. H., Loeser R. Energy balance in the solar trasition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion,  Astrophys. J., 406, 319—345 (1993).
https://doi.org/10.1086/172443
16. Foukal P., Hinata S. Electric fields in the solar atmosphere: a rewiew, Solar Phys., 132  (2), 307—334 (1991).
https://doi.org/10.1007/BF00152291
17. Harra L. K., Mathews S. A., Culhane J. L. Nonthermal velocity evolution in the precursor of a solar flare, Astrophys. J., 549 (2) 245—248 (2001).
https://doi.org/10.1086/319163
18. Hasegava A. Kinetic properrties of Alfven waves,  Proc. Indian Acad. Sci. A.  86 (2), 151—174 (1977).
19. Hasegava A., Chen L. Parametric decay of "kinetic alfven wave" and its application to plasma heating,  Phys. Rev. Lett. 36, 1362—1365 (1976).
https://doi.org/10.1103/PhysRevLett.36.1362
20. Hasegava A., Chen L. Kinetic processes in plasma heating by resonant mode conversion of Alfven wave,  Phys. Fluids, 19 (12), 1924—1934 (1976).
https://doi.org/10.1063/1.861427
21. Heyvaerts J., Priest E. R., Rust D. M. Models of solar flares,  Astrophys. J., 216, 213—221 (1977).
22. Hudson H. S. The physics of chromospheric plasmas (Coimbra Solar Physics Meeting, Eds P. Heinzel, I. Dorotovich, R. Rutten), ASP Conf. Ser., 368, P. 365 (2007).
23. Kryshtal A. N., Gerasimenko S. V., Voitsekhovska A. D. "Oblique" Bernstein modes in solar preflare plasma: Generation of second harmonics,  Adv. Space Res., 49, 791—796 (2012).
https://doi.org/10.1016/j.asr.2011.11.024
24. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiempirical models of chromospheric flare regions, Astrophys. J., 242 (1), 336—351 (1980).
https://doi.org/10.1086/158467
25. Miller I. A., Cargil P. I., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares, J. Geophys. Res., 102 (A7), 14631—14659 (1997).
https://doi.org/10.1029/97JA00976
26. Schmahl E. I., Webb D. K., Woodgate B., et al. Coronal manifestations of preflare activity,  in Energetic Phenomena on the Sun ("Impulsive Phase Transport"), Eds M. Kundu, B. Woodgate, 2439, 48—78 (Washington, DC, NASA CP, 1986).
27. Solanki S. K. Small-scale solar magnetic fields: an overview,  Space Sci. Revs., 63, 1—183 (1993).
https://doi.org/10.1007/BF00749277

28. Vernazza J. E., Avrett E. H., Loeser R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quite Sun,  Astrophys. J. Suppl. Ser., 45, 635—725 (1981).
https://doi.org/10.1086/190731