Height of the penetration into the ionosphere for internal atmosphere gravity waves

1Lizunov, GV, 1Leontiev, AYu.
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2014, 20 ;(4):31-41
Publication Language: Russian

Approximate analytical solutions describing the propagation and dissipation of atmosphere gravity waves (GW) in the viscous and heat-conducting Earth’s atmosphere are obtained. It is shown that the main absorption occurs in the sheet with thickness close to local value of atmosphere height scale. The sheet altitude depends on atmosphere parameters and GW spectral parameters but not on the GW amplitude. So, even the weakest ground sources create energy flow to the upper atmosphere and every monochromatic component of the wave has own dissipation altitude. The curves describing GW penetration into the atmosphere under different conditions are calculated. It is shown that height of the GW absorption increases in conditions of headwind and decreases in conditions of tailwind.

Keywords: atmosphere gravity waves, dissipation, ionosphere

1. Akhmedov R.R., Kunitsyn V.E. Simulation of the ionospheric disturbances caused by earthquakes and explosions. Geomagnetism and Aeronomy, 44(1), 105— 112 (2004) [in Russian].
2. Bidlingmayer E. R., Pogoreltsev A. I. A numerical model of acoustic-gravity waves and their transformation into thermal conduction and viscous waves.  Izvestiya, Atmospheric and Oceanic Physics,  28(1), 64—73 (1992) [in Russian].
3. Grigor’ev G. I.  Acoustic-gravity waves in the earth’s atmosphere (review). Radiophysics and Quantum Electronics, 42(1), 3—24 (1999) [in Russian]. 
4. Landau L. D., Lifshic E. M. Theoretical Physics. T. 6. Hydrodynamics, 736 p. (Nauka, Moscow, 1986) [in Russian].
5. Lizunov G.V., Leontiev A.Yu. An approximate dispersion equation for atmosphere gravity waves.  Kosm. nauka tehnol., 17 (1), 43—46 (2011) [in Russian].
6. Pogorel'cev A. I., Percev N. N. Effect of background wind on the structure of acoustic-gravity waves in the thermosphere Izvestiya, Atmospheric and Oceanic Physics,  31(6), 755— 760 (1995) [in Russian].7. Rishbath H., Garriott O.K. Introduction to Ionospheric Physics. 304 p. (Gidrometeoizdat, Leningrad, 1975) [in Russian].
8. Skorokhod T. V., Lizunov G. V. Localized Packets of Acoustic Gravity Waves in the Ionosphere.  Geomagnetism and Aeronomy, 52(1), 1—6 (2012) [in Russian]. 
9. Fedorenko A.K. Propagation directions of acoustic gravity waves above the polar caps of the Earth.  Kosm. nauka tehnol., 17 (3), 34—44 (2011) [in Russian].
10. Fedorenko A. K., Lizunov G. V., Rothkaehl H. Satellite Observations of Quasi-Wave Atmospheric Disturbances at Heights of the F Region Caused by Powerful Earthquakes.   Geomagnetism and Aeronomy, 45(3), 403—410 (2005) [in Russian].
11. Chernogor L. F. Physics and ecology of disasters. 555 p. (V. N. Karazin Kharkiv National University, Kharkiv, 2012) [in Russian].
12. Ding F., Wan W., Yuan H. The influence of background winds and attenuation on the propagation of the atmospheric gravity waves.  J. Atmos. Solar-Terr. Phys.  65, 857—869 (2003). 
13. Francis S. H. Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere.  J. Geophys. Res.  78, 2278—2301 (1973). 
14. Francis S. H. Global propagation of atmospheric gravity waves: a review.  J. Atmos. Solar-Terr. Phys.  37, 1011—1054 (1975). 
15. Fritts D. C. Gravity wave saturation in the middle atmosphere: a review of theory and observations.  Rev. Geophys. Space Phys22(3), 275—308 (1984).
16. Fritts D. C., Lund T. X. Gravity Wave influences in the thermosphere and ionosphere: Observations and recent modeling.  Aeronomy of the Earth’s atmosphere and ionosphere (IAGA Special Sopron Book Series).  2, 109—130 (2011).
17. Fritts D.C., Vadas S.L.Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds.  Ann. Geophys. (SpreadFEx special issue).  26, 3841—3861 (2008).
18. Hines C. O. Internal atmospheric gravity waves at ionospheric heights.  Can. J. Phys. — 38, 1441—1481 (1960). 
19. Hocke K., Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982—1995.  Ann. Geophys.  14, 917—940 (1996).
20. Kato S. Dynamics of the upper atmosphere. Developments of the Earth and planetary sciences.  233 p. (Center for Acad. Publ. Jap., Tokyo, 1980).
21. Makhlouf U., Dewan E., Isler J. R., Tuan T. F. On the importance of the purely gravitationally induced density, pressure and temperature var-iations in gravity waves: Their application to airglow observations.  J. Geophys. Res.  95, 4103—4111 (1990). 
22. Mayr H. G., Harris I., Herrero F. A., et al. Thermospheric gravity waves: observations and interpretation using the transfer function model (TFM).  Space Sci. Rev.  54, 297—375 (1990). 
23. Nappo C. J. An introduction to atmospheric gravity waves, 299 p. (Inter. Geophys. Ser.; Vol. 85). (Academic Press, New York, London, 2002).
24. Pitteway M. L. V., Hines C. O. The viscous damping of atmospheric gravity waves. Can. J. Phys41, 1935 — 1948 (1963).
25. Vadas S. L., Fritts D. C. Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J. Geophys. Res.  110, D15103. (2005). 
26. Vadas S. L., Yue J., She Ch., et al. A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004.  J. Geophys. Res.  114, D06103 (2009).
27. Yeh K. C., Liu C. H. Acoustic-gravity waves in upper atmosphere.  Revs Geophys. and Space Phys. 12(2), 193—216 (1974).