Resonance effects of wave-particle interactions during artificial charges particle beam injections in ionospheric plasma

1Baranets, N, 1Ruzhin, Yu., 2Erokhin, N, 2Afonin, V, 3Vojta, J, 3Smilauer, J, 4Kudela, K, 4Matisin, J, 5Ciobanu, M
1Pushkov Institute of Terrestrial Magnetism, Ionosphere and Propagation of Radio Waves of the Russian AS, Troitsk, Russia
2Space Research Institute of the Russian AS, Moscow, Russia
3Institute of Atmospheric Physics of the Academy of Sciences of Czech Republic, Prague, Czech Republic
4Institute of Experimental Physics SAS , Košice, Slovakia
5Institute of Space Sciences, Bucharest, Romania
Kosm. nauka tehnol. 2014, 20 ;(5):03-26
https://doi.org/10.15407/knit2014.05.003
Publication Language: Russian
Abstract: 

We investigate the wave-particle interaction in the ionospheric plasma with longitudinal plasma and electromagnetic waves generated during active space experiments with simultaneous injection of electron and xenon ion beams from the Intercosmos 25 (IK-25) spacecraft. Some results of our study of the beam-plasma instability relative to the longitudinal wave excitation during the electron beam injection were early presented [Plasma Phys. Rep. — 2007. — 33, N 11. — P. 995—1013]. A specific feature of the active experiment carried out at orbits 201 and 202 was that charged particle flows were injected in the same direction along the magnetic field lines 0 B in such a way that produced the oblique beam-into-beam injection. Some results of the beam-plasma interaction for this configuration were registered by the double satellite system consisting of the IK-25 station and Magion-3 subsatellite. The emphasis is on the study of the electromagnetic wave excitation in different frequency ranges and the acceleration of energetic charged particles by the beam-induced waves in the nearsatellite plasma. Excitation of electromagnetic waves (whistlers) on the first harmonic of electron cyclotron resonance for normal Doppler effect during electron beam injection into ionospheric plasma is considered.

Keywords: active space experiment, charged particle flow, electromagnetic wave, ionosperic plasma, whistler
References: 

1. Baranets N.V., Ruzhin Yu.Ya., Afonin V.V. et al. Electron beam injection quasilateral to the geomagnetic field from the data of Intercosmos-25 satellite: APEX project.  Kosm. nauka tehnol., 6 (5/6), 49—62 (2000) [in Russian].
https://doi.org/10.15407/knit2000.05.046
2. Baranets N.V., Sobolev Ya.P., Ciobanu M., et al. Development of beam-plasma instability during the injection a low-energy electron beam into the ionospheric plasma.  Plasma Physics Reports,  33(12), 1086—1106 (2007) [in Russian].
3. Volokitin A. S., Ruzhin Yu. Ya., Korobeinikov V. G., Dokukin V. S. Magnetic Effects of Plasma Jet Injection in the Ionosphere (APEKS Experiment).  Geomagnetism and Aeronomy, 40(3), 133— 137 (2000) [in Russian].
4. Grandal B. (Ed.) Artificial Particle Beams in Space Plasma Studies, 456 p. (Mir, Moscow, 1985) [in Russian].
5. Kycenko A. B., Stepanov K. N. On passing a beam of charged particles through magnetic active plasma.  Ukrainian Journal of Physics. 6(3), 297— 307 (1961) [in Ukrainian].
6. Mihajlovskij A. B. Theory of plasma instabilities..  Vol. 1. (Atomizdat, Moscow, 1975) [in Russian].
7. Mishin Е.V.,  Ruzhin Yu.Ya., Telegin V.A.  Interaction of electron fluxes with the ionospheric plasma, 264 p. (Gidrometeoizdat, Moscow, 1989) [in Russian].
8. Moffatt H. K.  Magnetic field generation in electrically conducting fluids, 342 p. (Mir, Moscow, 1980) [in Russian].
9. Oraevsky V.N., Sobolev Ya.P., Zhuzgov L.N. Magnetic Field Excitation during Electron Beam Injection from the Intercosmos-25 Satellite (APEX).  Plasma Physics Reports,  27 (4), 343—349 (2001) [in Russian].
10. Kaptsov N.A. (Ed.) Radio Physical Electronics. (Mir, Moscow, 1978) [in Russian].
11. Banks P. M., Raitt W. J. Observation of electron beam structure in space experiments.  J. Geophys. Res93, 5811—5822 (1988).
12. Baranets N. V., Galperin Yu. I., Erokhin N. S., et al. Electron flux scattering in strongly turbulent plasma region.  Adv. Space Res. 21(5), 709—712. (1998).
https://doi.org/10.1016/j.asr.2011.12.001
13. Baranets N. V., Ruzhin Yu. Ya., Erokhin N. S., et al. Acceleration of energetic particles by whistler waves in active space experiment with charged particle beams injection.  Adv. Space Res.  49(5), 859—871 (2012).
https://doi.org/10.1016/j.asr.2011.12.001
14. Baranets N. V., Sobolev Ya. P., Ruzhin Yu. Ya., et al. Excitation of HF and ULF-VLF waves during charged particle beams injection in active space experiment.  J. Plasma Phys. Res. SERIES.  8, 251—256 (2009).
15. Maehlum B. N., Maseide K., Aarsnes K., et al. Polar 5 - An electron accelerator experiment within an aurora.  Planet. Space Sci.  28, 269—279 (1980).
16. Marshall J. A., Lin C. S., Burch J. L., et al. Spacelab 1 experiments on interactions of an energetic electron beam with neutral gas.  J. Space Rockets.  25(5), 361—367 (1988).
17. Mett R. R., Tataronis J. A. Current drive via magnetohydrodynamic helicity waves.  Phys. Rev. Lett63(13), 1380—1383 (1989).
18. Přech L., Němeček Z., ŠafránkováJ., Omar A. Actively produced high-energy electron bursts within the magnetosphere: the APEX project.  Ann. geophys. 20, 1529—1538 (2002). 
https://doi.org/10.5194/angeo-20-1529-2002 
19. Roeder J. L., Sheldon W. R., Benbrook J. R., et al. X ray measurements during the ARAKS experiments. Ann. geophys.  36, 401—409 (1980).