Method for photometry of low light level meteors and earth artificial satellites from observations of superisocon TV systems

1Kozak, PM, 2Kozak, LV
1Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(1):38–47
https://doi.org/10.15407/knit2015.01.038
Publication Language: Ukrainian
Abstract: 

A universal semi-empirical method for photometry of low light level meteors and earth artificial satellites is proposed. The method was developed for photometrical measurements and reductions of images obtained with the help of TV systems of super-isocon type known by its non-linear response onto input signal and long afterimage in TV frames from dynamical objects. Semi-empirical approach has appeared in that the photometrical dependencies of TV system for moving and stationary objects were investigated with the test of photographing of star sky with the camera which was rotating with different angular velocity including stationary state. Basing on obtained results the calibration curve was plotted, and the light curve of a meteor from range of 4—7 magnitude was calculated. The proposed method is universal and can be used for photometrical processing of moving irradiated point objects obtained with any TV or video system

Keywords: meteor photometry, meteors, TV observations of meteors
References: 

1. Ivanikov V. I. On the methods of photographic photometry of meteors. Bjul. Stalinabadskoj astron. observatorii, No. 21, 3—46  (1957) [in Russian].

2. Kozak P. M. On the internal precision of digital photometry of  TV meteors. Kinematics Phys. Celestial Bodies, 14 (6), 553—563 (1998) [in Russian].

3. Kozak P. M. Analysis of the methods and precision of determination of the equatorial coordinates in digital reducing of  TV observations of meteors. Kinematics Phys. Celestial Bodies, 18 (5), 471—480 (2002) [in Russian].

4. Kozak P. M. A Vector method for the determination of trajectory parameters and heliocentric orbit elements of a meteor in TV observations. Kinematics Phys. Celestial Bodies, 19 (1), 62—76 (2003) [in Russian].

5. Sytinskaya N. N.  An Essai on the Photographic Photometry of Meteors.  Astronomical Journal, 12, issue 2, 174—199 (1935) [in Russian].

6.  Campbell-Brown M. D., Borovicka J., Brown P., Stokan E. Modelling of meteoroids at high resolution.  Abs. Meteoroids, P. 23 (Poznan, Poland, 2013).

7. Fleming D. E. B., Hawkes R. L., Jones J.  Light curves of faint television meteors. in Meteoroids and their parent bodies, Eds. J. Stohl, I. P. Williams, P. 261—264 (Astronomical Institute of the Slovak Academy of Science, 1993).

8. Hajdukova M., Kruchinenko V. G., Kazantsev A. M., et al. Perseid meteor stream 1991—1993 from TV observations in Kiev. Earth, Moon and Planets,  68, 297—301 (1995).

9. Hawkes R. L., Mason K. I., Fleming D. E. B., Stultz C. T. Analysis procedures for two station television meteors. Proceedings International Meteor Conference 1992, Eds. D. Ocenas, P. Zimnikoval.  P. 28—43 (IMO Publication, Antwerpen, 1993).

10. Hawkes R. L., Bussey J. E., MacPhee S. L., et al. Technics for high resolution meteor light curve investigations. Proceedings of the Meteoroids 2001 Conference, Kiruna, Sweden, 6—10 August. ESA-SP 495, Ed. Barbara Warmbein.  P. 281—286 (Kiruna, 2001).

11. Kozak P. “Falling Star”: Software for Processing of Double-Station TV Meteor Observations.  Earth, Moon, and Planets102 (1−4), P. 277—283 (2008).

12. Kozak P. “Falling star”: Software for processing of double-station TV meteor observations. Adv. Meteoroid and Meteor Sci.,  Eds. J. M. Trigo-Rodrigues, F. J. M. Rietmeijer, J. Llorka, D. Janches.  P. 277—283 (Springer, 2008).

13. Kozak P., Rozhilo O., Kruchynenko V., et al. Results of processing of Leonids-2002 meteor storm TV observations in Kyiv.  Advs Space Res.  39 (4), 619—623 (2007).

14. Kozak P. M., Rozhilo A. A., Taranukha Y. G. Some features of digital kinematic and photometrical processing of faint TV meteors.  Proceedings of the Meteoroids 2001 conference, Kiruna, Sweden, 6—10 August,  Ed. Barbara Warmbein.  ESA-SP 495, P. 337—342 (2001).

15. Kozak P., Rozhilo O., Taranukha Y. Identification of Radiants of Low-Light-Level Meteors from Double Station TV Observations During Autumn Equinox of 2001 and 2003.  Abs. IAU XXVIII General Assembly, Beijing, China, P. 5963 (2012).

16. LeBlanc A. G., Murray I. S., Hawkes R. L., et al. Evidence for transverse spread in Leonid meteors.  Mon. Notic. Roy. Astron. Soc. 313,  P. L9—L13 (2000).

17. McCrosky R. E., Posen A. Special data-reduction procedures for Prairie networks meteor photographs.  SAO Special Report.   273, P. 1—88 (1968).

18. Murray I. S., Beech M., Taylor M. J., et al. Comparison of 1998 and 1999 Leonid Light Curve Morphology and Meteoroid Structure.  Earth, Moon, and Planets.  82—83, P. 351—367 (1998).

19. Pearce G. S. Simulated meteors observation tests.  The astronomer.  7, P. 56—58 (1970).

20. Spurny P., Betlem H., Jobse K., et al. New type of radiation of bright Leonid meteors above 130 km. MAP. Sci.  35, P. 1109—1115 (2000).

21. Taylor M. J., Gardner L., Murray I., Jenniskens P.  Jetlike structures and wake in Mg I (518 nm) images of 1999 Leonid storm meteors.  Earth, Moon, and Planets.  82—83, 379—389 (2000).