Bioenergetics of plant cells in microgravity
1Brykov, VO 1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2015, 21 ;(4):84–93 |
https://doi.org/10.15407/knit2015.04.084 |
Publication Language: Ukrainian |
Abstract: This paper summarizes the data on the ultrastructure and functioning of energy organelles in cells of autotrophic and heterotrophic tissues of higher plants that grow under the influence of clinorotation. It is shown that due to the adaptive reactions in mitochondria the energy homeostasis is retained in heterotrophic root cells, and its support under microgravity conditions will depend on the flow of substrates to the oxidative phosphorylation. It was established that the level of alterations in chloroplast ultrastructure under suboptimal light conditions was pronounced to a greater extent than under optimal light conditions. Based on the results, we suggest that the microgravity increases the negative effects of suboptimal lighting conditions in the primary metabolism of plants |
Keywords: alternative oxidase, chloroplasts, clinorotation, mitochondria, respiration, ultrastructure |
1. Klimchuk D.O. Structural and functional organization of mitochondria in soybean root statocytes under microgravitation. Cytology and Genetics. 41(1), 30 —35 (2007) [in Ukrainian].
2. Baldwin K.M., Herrick R.E., McCue S.A. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity. J. Appl. Physiol. 75, 2466— 2470 (1993).
3. Bingham G.E., Levinskikh M.A., Sytchev V.N. Effects of gravity on plant growth. J. Gravit. Physiol. 7, 5—8 (2000).
4. Brykov V. Clinorotation affects the ultrastructure of pea root mitochondria. Micrograv. Sci. Technol. 23, 215—219 (2011).
5. Brykov V.O., Shugaev A.G., Generozova I.P. Ultrastructure and metabolic activity of pea mitochondria under clinorotation. Cytology and Genetics. 46, 144—149 (2012).
https://doi.org/10.3103/S0095452712030036
6. Carde J.-P. Electron microscopy of plant cell membranes. Methods Enzymol./ Eds L.Packer, R.Douce. 148, 599—622 (Academic Press Inc., New York, 1987).
7. Chance B.,Williams G.R. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17, 65— 134 (1956).
8. Ferl R., Wheeler R., Levine H.G., et al. Plants in space. Curr. Opin. Plant Biol. 5, 258— 263 (2002).
9. Jeong J., Guerinota M.L. Homing in on iron homeostasis in plants. Trends Plant Sci. 14, 280 — 285 (2009).
https://doi.org/10.1016/j.tplants.2009.02.006
10. Jiao S.X., Hilaire E., Paulsen A.G., et al. Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity. Physiol. plant. 122, 281— 291 (2004).
11. Kochubey S.M., Adamchuk N.I., Kordyum E.L., et al. Microgravity effects the photosynthetic apparatus of Brassica rapa L. Plant Biosystems. 138, 1— 9 (2004).
https://doi.org/10.1080/11263500410001684062
12. Lambers H. Respiration in intact plant tissues:its regulation and dependence on environmental factors, metabolism and invading organisms. Higher Plant Cell Respiration,/ Eds R.Douce, D.A.Day. 18, 202— 247 (Springer, Berlin, 1985).
13. Lambers H., Scheurwater I., Atkin O.K. Respiratory patterns in roots in relation to their functioning. Plant Roots: The Hidden Half, / Eds Y.Waisel, A.Eshel, V.Kafakki, P.323— 362 (Marcel Dekker, New York, 1996).
14. Liao J., Liu G., Monje O., Stutte G.W., et al. Induction of hypoxic root metabolism results from physical limitations in O 2 bioavailability in microgravity. Adv.Space Res. 34, 1579— 1584 (2004).
https://doi.org/10.1016/j.asr.2004.02.002
15. Małecka A., Derba-Maceluch M., Kaczorowska K., et al. Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: mitochondrial and peroxisomal level. Acta Physiol. Plant. 31, 1065— 1075 (2009).
16. Merkys A.J., Laurinavicius R.S., Svegzdiene D.V. Plant growth, development and embryogenesis during Salyut-7 flight. Adv. Space Res. 4, 55—63 (1984).
https://doi.org/10.1016/0273-1177(84)90224-2
17. Millar A.H., Whelan J., Soole K.L., et al. Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62, 79— 104 (2011).
https://doi.org/10.1146/annurev-arplant-042110-103857
18. Paul A.-L., Wheeler R.M., Levine H.G., et al. Fundamental plant biology enabled by the space shuttle. Amer. J. Bot. 100, 226— 234 (2013).
https://doi.org/10.3732/ajb.1200338
19. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29, P. 45 (2000).
20. Plaxton W.C., Podesta F.E. The functional organization and control of plant respiration. Crit. Rev. Plant. Sci. 25, 159— 198 (2006).
21. Porterfield D.M. The biophysical limitations in physiological transport and exchange in plants grown in microgravity. J. Plant Growth Regul. 21, 177— 190 (2002).
22. Rasmusson A.G., Møller I.M. Mitochondrial electron transport and plant stress. Adv. Plant Biol. 1, 357— 381 (2011).
23. Rhoads D.M., Subbaiah C.C. Mitochondrial retrograde regulation in plants. Mitochondrion. 7, 177— 194 (2007).
https://doi.org/10.1016/j.mito.2007.01.002
24. Saha G.C., Vandemark G.J. Evaluation of expression stability of candidate references genes among green and yellow pea cultivars (Pisum sativum L.) subjected to abiotic and biotic stress. Amer. J. Plant Sci. 3, 235— 242 (2012).
25. Shenkman B.S., Nemirovskaya T.L., Belozerova I.N., et al. Mitochondrial adaptations in skeletal muscle cells in mammals exposed to gravitational unloading. J. Grav. Physiol. 9, 159— 162 (2002).
26. Slocum R.D., Gaynor J.J., Galston A.W. Cytological and ultrastructural studies on root tissues. Ann. Bot. 54, 65— 76 (1984).
27. Stein T.P., Schlutera M.D, Galante A.T., et al. Energy metabolism pathways in rat muscle under conditions of simulated microgravity. J. Nutr. Biochem. 13, 471— 478 (2002).
28. Stout S.C., Porterfield D.M., Briarty L.G., et al. Evidence of root zone hypoxia in Brassica rapa L.grown in microgravity. Int. J. Plant Sci. 162, 249— 255 (2001).
https://doi.org/10.1086/319585
29. Stutte G.W., Monje O., Hatfield R.D., et al. Microgravity effects on leaf morphology, cell structure,carbon metabolism and mRNA expression of dwarf wheat. Planta. 224, 1038— 1049 (2006).
https://doi.org/10.1007/s00425-006-0290-4
30. Sychev V.N., Levinskikh M.A., Gostinsky S.A., et al. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronaut. 60, 426— 432 (2007).
https://doi.org/10.1016/j.actaastro.2006.09.009
31. Talalaiev O., Korduym E. Expression of small heat shock protein (sHSP)genes in the garden pea (Pisum sativum) under slow horizontal clinorotation. Plant Signaling and Behavior, 9, Published online: 30 Apr 2014 (2014).
32. Tripathy B.C., Brown C.S., Levine H.G., et al. Growth and photosynthetic responses of wheat plants grown in space. Plant Physiol. 110, 801— 806 (1996).
https://doi.org/10.1104/pp.110.3.801
33. Van Aken O., Giraud E., Clifton R., et al. Alternative oxidase: a target and regulator of stress responses. Physiol. plant. 137, 354— 361 (2009).
34. Wolff S.A., Coelho L.H., Zabrodina M., et al. Plant mineral nutrition,gas exchange and photosynthesis in space: A review. Adv. Space Res. 51, 465— 475 (2013).
https://doi.org/10.1016/j.asr.2012.09.024