Signs of self-organization processes in the solar atmosphere and near Earth space

1Kozak, LV, 2Kostyk, RI, 3Cheremnykh, OK, 1Prokhorenkov, АS
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2015, 21 ;(4):66–80
Publication Language: Ukrainian

A study of the properties of turbulent plasma processes in the solar atmosphere, solar wind, and the Earth's magnetosphere transitional areas is made. The ground-based observations of fluctuations of the convective velocity component in active and quiet solar photosphere were used for the analysis. They were obtained by the 70-cm vacuum tower telescope VTT in Isanie (Tenerife Island, Spain), and satellite measurements of magnetic field fluctuations obtained by the satellite C3 of spacecraft mission “Cluster-2” (the data are of temporal discreteness of 22.5 Hz). To characterize turbulent processes we conducted (at different scales) the analysis of moments of distribution function for velocity fluctuations and magnetic field, spectral and wavelet analysis. The obtained dependences were compared with the existing description models of homogeneous and inhomogeneous turbulent processes. Along with various types of turbulent processes in the analyzed areas we have noted the possibility of realization of self-organized plasma structures in magnetic active regions of the solar photosphere and of multiple nature of the dynamics of the magnetosphere. Magnetosphere behaves as a self-organizing system with different characteristic scales. Thus, if the abrupt spikes of the parameters in the transition region of the Earth’s magnetosphere are present, then the appearance of the inverse cascade process is recorded.

Keywords: inverse cascade processes in the Earth’s magnetosphere, self-organization magnetic plasma structures., the solar wind plasma, the transition regions of the magnetosphere of the Earth, turbulent processes

1. Astaf’eva N.M. Wavelet analysis: basic theory and some applications. Phys. Usp. 166(11), 1145—1170 (1996) [in Russian].

2. Barenblatt G. I. Turbulent boundary layers at very large Reynolds numbers.  Russian Mathematical Surveys. 59(1), 45—62 (2004) [in Russian].

3. Gledzer E. B. Dissipation and Intermittency of Turbulence in the Framework of Hydrodynamic Approximations. Izvestiya, Atmospheric and Oceanic Physics,  41(6), 733—751 (2005) [in Russian].

4. Zagorodnij A. G., Cheremnyh O. K. Introduction to Plasma Physics [Vvedenie v fiziku plazmy]. 697 p. (Nauk. dumka, Kiev, 2014) [in Russian].

5. Kozak L. V., Kostyk R. I., Cheremnykh O. K. Two turbulent regimes on the Sun.  Kinematics Phys. Celestial Bodies. 29 (2), 22—29 (2013) [in Russian].

6. Kozak L.V., Pilipenko V.A., Chugunova O.M., Kozak P.N. Statistical analysis of turbulence in the foreshock region and in the Earth's magnetosheath.  Cosmic Research, 49(3), 202—212 (2011) [in Russian].

7. Kozak L.V., Savin S.P., Budaev V.P., et al.  Character of turbulence in the boundary regions of the Earth's magnetosphere,

Geomagnetism and Aeronomy, 52(4), 470—481 (2012) [in Russian].

8. Kolmogorov A. N. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers. Dokl. Academy of Sciences of the USSR, 30(4), 299 — 303 (1941) [in Russian].

9. Zelenyj L.M., Veselovskij I.S. (Eds.) Plazma heliogeophysics. V. 1,  672 p. (Vol. 1-2; Vol. 1) (Fizmatlit, Moscow, 2008) [in Russian].

10.  Kremenec'kyj I. O., Cheremnyh O. K. Kosmichna pogoda: mehanizmy i projavy, 144 p. (Nauk. dumka, Kyiv, 2009) [in Ukrainian].

11. Benzi R., Ciliberto S., Tripiccione R., et al. Extended self — similarity in turbulent flows.  Phys. Rev. E. 48, R29—R32 (1993).

12. Boldyrev S. Spectrum of magnetohydrodynamic turbulence.  Phys. Rev. Lett.  96, 115002— 115006 (2006).

13. Consolini G., Kretzschmar M., Lui A. T. Y., et al. On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach.  J. Geophys. Res110, A07202 (2005). doi:10.1029/2004JA010947.

14. Dubrulle B. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance.  Phys. Rev. Lett.  73, 959—962 (1994).

15. Grossmann A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape.  SIAM J. Mathematical Analysis.  15, 723—731 (1984).

16. Jacobsen K. S., Phan T. D., Eastwood J. P., et al. THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly.  J. Geophys. Res.  114, A08210 (2009). doi:10.1029/2008JA013873.

17. Kostyk R. I., Khomenko E. V. The effect of acoustic waves on spectral-line profiles in the solar atmosphere: Observations and theory.  Astron. Repts.  46(12), 925—931 (2002).

18. Kraichnan R. H. The structure of isotropic turbulence at very high Reynolds numbers.  J. Fluid Mech5, 497—543 (1959).

19. Kraichnan R. H. Convergents to turbulence functions.  J. Fluid Mech.  41, 189—217 (1970).

20. Schroter E. H., Soltau D., Wiehr E. The German solar telescopes at the Observatorio del Teide.  Vistas in Astron.  28, 519—525 (1985).

21. She Z., Leveque E. Universal scaling laws in fully developed turbulence.  Phys. Rev. Lett.   72, 336—339 (1994).

22. Stebbins R. T., Goode P. R. Waves in the Solar Photosphere.  Solar. Phys.  110, 237—248 (1987).