Evaluation of the use of polyurethane in a solid rocket fuel for a single stage launch vehicle — carrier of an unmanned spacecraft orbiter for orbital and suborbital flights

1Levenko, AS, 2Prysiazhnyi, VI, 3Pauk, OL, 4Drozdenko, AS
1Air-Space Agency Magellan, Kyiv, Ukraine
2National Center of Space Facilities Control And Test, State Space Agency of Ukraine, Kyiv, Ukraine
3The State Enterprise “Production Association Yuzhny Machine-Building Plant named after A. M. Makarov”, Dnipropetrovsk, Ukraine
4Dnipropetrovsk Rocket Space Engineering College, Dnipropetrovsk National University after Oles Honchar, Dnipropetrovsk, Ukraine
Space Sci.&Technol. 2016, 22 ;(1):36-51
https://doi.org/10.15407/knit2016.01.036
Publication Language: Russian
Abstract: 
We present the results of theoretical study of an opportunity of creating a single-stage solid-fuel carrier for delivery of an Unmanned SpaceCraft (USC) orbiter on a suborbital trajectory. We investigate the use of polyurethane in the solid rocket fuel and the chosen production technology of a fuel charge of complex shape. We discuss possible dimensions of the launch vehicle and its design features. We calculate flight distance of the spacecraft on a suborbital trajectory (without the inclusion of the onboard engine) by the final carrier velocity in the boost path, with the possible achievement altitude up to 170 km. We analyze the complex combined control system of the launch vehicle and the spacecraft to achieve the required landing coordinates on a parachute system; control system may be applied for landing the spacecraft on mobile marine platforms. 
Keywords: booster, composite solid propellants, on-board control system., polyurethanes, rocket and space complex, solid rocket motor, the return orbiter unmanned orbiter
References: 
1. Kukushkin V. I., Levenko A. S. Easy rocket carrier. Technical Proposal (Legkaja raketa nositel'. Tehnicheskoe predlozhenie). Ed. V. I. Kukushkin, 320 p. (AI Ltd. with «TU», Dnepropetrovsk, 2013) [in Russian].
2. Levenko A. S. Universal LRE. Technical Proposition. Mechanics of aerospace systems. Monograph, 56 p. (Stylus, Dnepropetrovsk, 2012) [in Russian].
3. Levenko A. S. Small missile system with a return orbiter. Technical Proposition. Mechanics of aerospace systems. Monograph. 74 p. (AI Ltd. with «TU», Dnepropetrovsk, 2013) [in Russian].
4. Levenko A. S., Pauk O. L., Prisjazhnyj V. I. Rocket and Space Complex. Technical Proposal. Mechanics of aero space systems: (Raketno-kosmicheskij kompleks. Tehnicheskoe predlozhenie. Mehanika vozdushno-kosmicheskih sistem:) monografija, 64 p. (Serednjak T. K., Dnepropetrovsk, 2014) [in Russian]. 
5. Pavljuk Ju. C. Ballistic missile design (Ballisticheskoe proektirovanie raket:) Ucheb. posobie dlja vuzov, 92 p. (Izd-vo ChGTU, Chelyabinsk, 1996) [in Russian]. 
6. Prysiazhnyi V. I., Levenko A. S., Pauk O. L. Some aspects of creating return orbiter in the form of a remote sensing satellite and launch vehicle. Kosm. nauka tehnol., 20 (4), 3—13 (2014) [in Russian].
https://doi.org/10.15407/knit2014.04.003
7. Ruseckij V. V., Beljaeva V. I., Mihedov N. N., Ruseckaja I. G., Parahnevich S. G. A method for manufacturing products made of polyurethanes (Sposob izgotovlenija izdelij iz poliuretanov). Pat. 2199551 RU, C08G18/32. N 2001108562/04,  zajavl. 30.03.2001, published 27.02.2003 [in Russian]. 
8. Ruseckij V. V. et al. Caoutchouc and rubber [Kauchuk i rezina], N 3. — P. 15—17 (1989) [in Russian].
9. Syrokvash S. M., Meheda V. I. Control Systems and guided cruise missiles, and the prospects for countering them (Sistemy upravlenija i navedenija krylatyh raket i perspektivy protivodejstvija im.) Nauka i voennaja bezopasnost’
N 3, 60—64 (2008) [in Russian].
10. Kukushkin V. I., Levenko A. S., Uruskyi O. S., Sabadosh L. Y. Aerospace Plane. The Time of Researches and Achievements. Translating from Russian into English V. V. Shepel, 104 p. (Dominanta Print, Dnepropetrovsk, 2015).