Attitude determination of a spacecraft using a vertical sensor
Heading:
1Tkachenko, AI 1International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kyiv, Ukraine |
Space Sci.&Technol. 2016, 22 ;(2):22-28 |
https://doi.org/10.15407/knit2016.02.022 |
Publication Language: Russian |
Abstract: We show a possibility of a spacecraft attitude determination using the only source of information — a local vertical reference frame — in a condition of the vehicle’s angular stabilization by means of considerable control torques.
|
Keywords: angular stabilization, attitude determination, orbital gyrocompass, spacecraft, vertical sensor |
References:
1. Besekerskij V. A., Ivanov V. A., Samotokin B. B. The orbital gyrocompassing, 256 p. (Politehnika, St. Petersburg, 1993) [in Russian].
2. Brammer K., Siffling G. Kalman-Bucy Filters. 200 p. (Nauka, Moscow, 1982) [in Russian].
3. Branec V. N., Shmyglevskij I. P. The use of quaternions in problems of solid-state orientation, 320 p. (Nauka, Moscow, 1973) [in Russian].
4. Grishin V. A. Development of High Precision Earth Sensors and Navigation Systems based on Horizon Line Observation. Current problems in remote sensing of the Earth from space, 9 (3), 108—114 (2012) [in Russian].
5. Lebedev D. V., Tkachenko A. I. Management of a spherical spacecraft motion in the magnetic field of the Earth. Part II. Orientation and stabilization. Problems of Control and Informatics, N 3, 5—18 (1996) [in Russian].
6. Lebedev D. V., Tkachenko A. I. Navigation and control of the orientation of small satellites, 298 p. (Nauk. dumka, Kiev, 2006) [in Russian].
7. Lipton A. Exhibition of the inertial systems on a movable base, 167 p. (Nauka, Moscow, 1971) [in Russian].
8. Lee E. B., Markus L. Foundations of Optimal Control Theory, Transl. from Eng., 574 p. (Nauka, Moscow, 1972) [in Russian].
9. Parusnikov N. A., Morozov V. M., Borzov V. I. Correction task in the inertial navigation, 174 p. (MSU, Moscow, 1982) [in Russian].
10. Tkachenko A. I. GPS-correction in the problem of loworbit spacecraft navigation. J. Computer and Systems Sciences International, No. 3, 122—133 (2009) [in Russian].
11. Tkachenko A. I. Magnetic stabilization of a spacecraft and the effect of compensation of information errors. Cosmic Research, 50 (1), 79—88 (2012) [in Russian].
https://doi.org/10.1134/S0010952512010108
12. Tkachenko A. I. Compact algorithm for estimating spacecraft motion parameters from magnetometer readings. J. Computer and Systems Sciences International, No. 2, 105— 117 (2013) [in Russian].
https://doi.org/10.1134/s1064230713010103
13. Filippov Yu. I. Effective algorithm of transformation of a quaternion of FV-orientation in system of angles of EulerKrylov. Polet, No. 6, 32—35 (2009) [in Russian].
14. Potapenko Ye. M. Simplified linear-system restorability and controllability criteria and their application in robotics. J. Automation and Inform. Sci., 27 (5-6), 146—151 (1996).
https://doi.org/10.1615/JAutomatInfScien.v28.i5-6.170
2. Brammer K., Siffling G. Kalman-Bucy Filters. 200 p. (Nauka, Moscow, 1982) [in Russian].
3. Branec V. N., Shmyglevskij I. P. The use of quaternions in problems of solid-state orientation, 320 p. (Nauka, Moscow, 1973) [in Russian].
4. Grishin V. A. Development of High Precision Earth Sensors and Navigation Systems based on Horizon Line Observation. Current problems in remote sensing of the Earth from space, 9 (3), 108—114 (2012) [in Russian].
5. Lebedev D. V., Tkachenko A. I. Management of a spherical spacecraft motion in the magnetic field of the Earth. Part II. Orientation and stabilization. Problems of Control and Informatics, N 3, 5—18 (1996) [in Russian].
6. Lebedev D. V., Tkachenko A. I. Navigation and control of the orientation of small satellites, 298 p. (Nauk. dumka, Kiev, 2006) [in Russian].
7. Lipton A. Exhibition of the inertial systems on a movable base, 167 p. (Nauka, Moscow, 1971) [in Russian].
8. Lee E. B., Markus L. Foundations of Optimal Control Theory, Transl. from Eng., 574 p. (Nauka, Moscow, 1972) [in Russian].
9. Parusnikov N. A., Morozov V. M., Borzov V. I. Correction task in the inertial navigation, 174 p. (MSU, Moscow, 1982) [in Russian].
10. Tkachenko A. I. GPS-correction in the problem of loworbit spacecraft navigation. J. Computer and Systems Sciences International, No. 3, 122—133 (2009) [in Russian].
11. Tkachenko A. I. Magnetic stabilization of a spacecraft and the effect of compensation of information errors. Cosmic Research, 50 (1), 79—88 (2012) [in Russian].
https://doi.org/10.1134/S0010952512010108
12. Tkachenko A. I. Compact algorithm for estimating spacecraft motion parameters from magnetometer readings. J. Computer and Systems Sciences International, No. 2, 105— 117 (2013) [in Russian].
https://doi.org/10.1134/s1064230713010103
13. Filippov Yu. I. Effective algorithm of transformation of a quaternion of FV-orientation in system of angles of EulerKrylov. Polet, No. 6, 32—35 (2009) [in Russian].
14. Potapenko Ye. M. Simplified linear-system restorability and controllability criteria and their application in robotics. J. Automation and Inform. Sci., 27 (5-6), 146—151 (1996).
https://doi.org/10.1615/JAutomatInfScien.v28.i5-6.170