Seasondaily variability of GNSS sygnals ionospheric delays and effectiveness of their compensation using the network differential method

1Zhalilo, AA, Bessonov, Ye.A, 2Zanimonskiy, Ye.M
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine; Kharkіv National University of Radio Electronics of the Ministry of Education and Science of Ukraine, Kharkiv,Ukraine
2Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Space Sci.&Technol. 2016, 22 ;(3):60-74
Publication Language: Russian
The results of researches of variability and comparative effectiveness of the ionospheric delays compensations by use of
the network differential GNSS-positioning method in different seasons are presented. It is shown that the residual ionospheric errors at single-frequency differential positioning may achieve 0.3 m on baseline distances up to 35 km and 0.9 m on baseline distances up to 150 km in autumn and winter, while their value is reducing 2-3 times in spring and summer. Using own approach for network differential corrections of GNSS observations we are able to reduce considerable (by 30—40 %) the residual ionospheric errors and to increase the positioning accuracy.
1. Afraimovich E. L., Perevalova N. P. GPS-monitoring of the earth's upper atmosphere. 480 p. (Irkutsk, 2006) [in Russian].
2. Bessonov E. A. Approximation of smooth functions of estimated ionospheric corrections for precision GNSS Positioning. Radiotehnika, Issue 165, 69—74 (2011) [in Russian].
3. Hofmann-Wellenhof B., Lichtenegger H., and Collins J. Global Positioning System. Theory and Practice: Transl. from Eng. and ed. by Ya. S. Yatskiv, 380 p. (Nauk.dumka, Kyiv, 1996) [in Ukrainian].
4. Zhalilo A. A., Bessonov E. A. On the problem of the account of ionospheric delay of navigation signals in the problems of accurate GNSS positioning. Proc.of the IVth International Radio Electronic Forum "Applied radio electronics. The state and prospects of development”, Vol.1, N 2, 62—65 (Kharkov, 2011) [in Russian].
5. Zhalilo A A., Bessonov E. A. Improvement of the accuracy of the differential single-frequency GNSS positioning network by ionospheric correction of errors. Radiotehnika, N 169, 302—314 (2012) [in Russian].
6. Zhelanov A. A., Bessonov E. A. On the using IGS global ionospheric maps in the tasks of high-precision GNSS positioning, Applied Radio Electronics, 10 (3), 302—306 (2011) [in Russian].
7. Zanimonskiy Y. M., Zalizovski A. V., Lisachenko V. N., et al. Ionospheric Disturbances over Europe Stimulated by Strong Atmospheric Front. Radiofizika i radioastronomija15 (2), 20—32 (2010) [in Russian].
8. Khoda O. Klio software for the estimation of the ionospheric parameters. Kosm. nauka tehnol., 5 (5/6), 25—32 (1999) [in Russian].
9. Brown N., Geisler I., Troyer L. RTK rover performance using the master-auxiliary concept. J. Global Positioning Systems, 5 (1-2), 135—144 (2006).
10. Hernandez-Pajares M., Juan J. M., Sanz J. Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J. Geophys. Res.: Space Phys., 111 (A7), CiteID A07S11, P. 1—13 (2006).
11. Hernandez-Pajares M., Juan J. M., Sanz J., Colombo O. L. Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400—1000 km and with high geomagnetic activity. Geophys. Res. Lett., 27 (13), 2009—2012 (2000).
12. Komjathy A. Global ionospheric total electron content mapping using the global positioning system: Ph. D. Thesis, 248 p. (University of New Brunswick, Fredericton, New Brunswick, Canada, 1997). (Department of Geodesy and Geomatics Engineering Technical Report N 188).
13. Oscar L. C. Resolving carrier-phase ambiguities on the fly, at more than 100 km from nearest reference site, with the help of ionospheric tomography. Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999), P. 1635—1642 (Nashville, TN, 14 — 17 September 1999).
14. Schaer S. Mapping and predicting the Earth’s ionosphere using the Global Positioning System: Ph.D. Thesis, 228 p. (Astronomisches Institut der Universitat Bern,
Bern, 1999).
15. Schüler E., Hein G., Schüler T. Active GNSS networks and the benefits of combined GPS + Galileo Positioning. Inside GNSS, P. 46—55 (2007 November-December).
16. Wienia R. J. Use of Global ionospheric maps for precise point positioning, 132 p. (TU Delft, Aerospace Engineering, Mathematical Geodesy and Positioning, 2008).