Simulation of motion of ions in the channel of a stationary plasma thruster

1Petrenko, OM, 2Bucharskyi, VL
1Oles Honchar Dnipro National University, Dnipro, Ukraine; Space Electric Thruster Systems, Dnipro, Ukraine
2Oles Honchar National University of Dnipro, Dnipro, Ukraine
Space Sci.&Technol. 2017, 23 ;(5):14-20
https://doi.org/10.15407/knit2017.05.014
Publication Language: Russian
Abstract: 
The paper presents the results of numerical simulation of the process of motion of working fluid ions in the accelerating channel of a stationary plasma thruster SPD-70. The simulation was carried out on the basis of a direct numerical solution of the rarefied plasma kinetic equation in the accelerating electrostatic field.
Keywords: kinetic equation of rarefied plasma, numerical simulation, stationary plasma thruster
References: 
1. Belan N. V., Kim V. P., Tikhonov V. B., Oranskii, A.I. Statsionarnyye plazmennyye dvigateli [Stationary plasma thrusters], 315 p. (KHAI, Khar'kov, 1989) [in Russian].
2. Bucharskiy V. L. Metod sovmestnoy approksimatsii postroyeniya raznostnykh skhem dlya resheniya uravneniy v chastnykh proizvodnykh [A method of joint approximation of the construction of difference schemes for solving partial differential equations.]. Tekhnicheskaya mekhanika – Technical mechanics, N 1, 129—140 (2007) [in Russian].
3. Gorshkov O. A., Muravlev V. A., Shagayda A. A. Khollovskiye i ionnyye plazmennyye dvigateli dlya kosmicheskikh apparatov [Hall and ion plasma engines for spacecraft], 370 p. (Mashinostroyeniye, Moskow,: 2008) [in Russian].
4. Kim V. P. Konstruktivnyye priznaki i osobennosti rabochikh protsessov v sovremennykh statsionarnykh plazmennykh dvigatelyakh Morozova [Constructive features and features of working processes in modern Morozov’s stationary plasma engines]. Zhurnal tekhnicheskoy fiziki – J. Technical Physics, 85 (N 3), 45—59 (2015) [in Russian].
5. Klimontovich Yu. L. Kineticheskaya teoriya neideal'nogo gaza i neideal'noy plazmy [Kinetic theory of nonideal gas and nonideal plasma], 352 p. (Nauka, Moskow, 1975) [in Russian].
6. Kulagin S. N., Khit'ko A. V., Dubovik L. G. Chislennoye modelirovaniye protsessov v khollovskom dvigatele [Numerical modeling of processes in the Hall engine]. Aviatsionnokosmicheskaya tekhnika i tekhnologiya – Aerospace technics and technology, N 8 (34), 46—49 (2006) [in Russian].
7. Morozov A. I. Issledovaniye statsionarnogo elektromagnitnogo uskoreniya plazmy [Investigation of stationary electromagnetic acceleration of plasma]. Doctor’s thesis, 323 p. (Moskow, 1965) [in Russian].
8. Cho S., Komurasaki K., Arakawa Y. Kinetic particle simulation of discharge and wall erosion of a Hall thruster. Phys. Plasmas (1994-present), 20 (6), 463—501 (2013).
9. Gavryushinn V. M., Kim V., Kozlov V. I., Maslennikov N. A. Physical and Technical Bases of the Modern SPT Development Proceedings of the 24th International Electric Propulsion Conference (Electric Rocket Propulsion Society, Cleveland, OH) (1995).
10. Kim V. Main Physical Futures and Processes Determining the Performance of Stationary of a Hall Thrusters. J. Propulsion and Power, 14(5), 736—743 (1998).
https://doi.org/10.2514/2.5335
11. Kim V. Acceleration Channel for Low Power Hall Thrusters. Proc. of 24th International Symposium on Space Technology and Science (2004).
12. Koo J. W, Boyd I. D. Computational model of an SPT-100 thruster. Proc. of 28th International Electric Propulsion Conference. (2003).
13. Parra F. I., Ahedo E. J., Fife M., Martinez-Sanchez M. A Two-Dimensional Hybrid Model of the Hall Thruster Discharge. J. Appl. Phys., 100, 293—304 (2006).
https://doi.org/10.1063/1.2219165
14. Tahara H., Yuge S., Shirasaki A., Martinez-Sanchez M. Performance Prediction of Hall Thrusters Using One Dimensional Flowfield Calculation. Proc. of 24th International Symposium on Space Technology and Science (2004).