Tests of the gravitational redshift effect in space-born and ground-based experiments

1Vavilova, IB
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Space Sci.&Technol. 2018, 24 ;(1):31-48
https://doi.org/10.15407/knit2018.01.031
Publication Language: Ukrainian
Abstract: 
This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact  stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.
Keywords: compact stars, galaxy clusters., General Relativity Theory, gravitational redshift, navigation systems
References: 
1. Alexandrov A. N., Vavilova I. B., Zhdanov V. I. et al. General Relativity Theory: Recognition through Time. Kiev, Naukova dumka, 332 pp. (2015).
2. Braginsky V.B., Denisov V.I. (Eds.). Experimental tests of the theory of gravitation. Moscow, MSU, 254 P. (1989). (In Russian).
3. Korkina M.P., Grigorev S.B. GRT Experiments in the Solar System. Astronomical School’s reports, 1(2): 29–37 (2000). (In Russian).
4. Korsun’ A.O. Measurement of time from ancient times to the present. Kyiv: Tekhnika, 176 P. (2009). (In Ukrainian).
5. Misner Charles W., Thorne Kip S., Wheeler John A. Gravitation. San Francisco: W.H. Freeman and Co. (1973).
6. Will Clifford M. Theory and Experiment in Gravitational Physics. Cambridge, UK: Cambridge University Press, 396 P. (1993).
https://doi.org/10.1017/CBO9780511564246
7. Einstein A. Relativity: The Special and General Theory (1916).  In: Methuen & Co Ltd, Authorised translation by Robert W. Lawson (1920).
8. Yatskiv Ya. S., Alexandrov A. N., Vavilova I. B. et al. General Relativity theory: tests through time. Kyiv, MAO NAS of Ukraine, 288 p. (2005).
9. Yatskiv Ya. S., Alexandrov A. N., Vavilova, I. B. et al. General Relativity: horizons for tests. Kyiv: MAO NAS of Ukraine, 264 pp. (2013). (In Ukrainian).
10. Yatskiv Ya.S., Korsun’ A.O., Khoda O.O. Basic coordinate-time protection of development in Ukraine of topographic and geodetic activity, land-regulation and navigation of moving objects. Innovation technologies, 4-5: 4-21 (2003). (In Ukrainian).
11. Abbott B. P., Abbott R., Abbott T. D. et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Letters, 119, 161101 (2017).
https://doi.org/10.1103/PhysRevLett.119.161101
12. Alam Shadab, Croft Rupert A. C., Ho Shirley, Zhu Hongyu, Giusarma Elena. Relativistic Effects on Galaxy Redshift Samples due to Target Selection. arXiv:1709.07856 (2017)
13. Alley C.O., Cutler L.S., Reisse R. et al. Experimental Gravitation. Proc. of the conf. at Pavia (1976), ed. B. Bertotti, Academic Press, 1977.
14. Antoniadis J., Freire P. C. C., Wex N. et al. A Massive Pulsar in a Compact Relativistic Binary. Science, 340 (6131): 1233232 (2013).
https://doi.org/10.1126/science.1233232
15. Ashby N. Relativistic effects in the Global Positioning System. Dadhich N. and Narlikar J. V. eds., Gravitation and Relativity: At the Turn of the Millennium. 15th International Conference on General Relativity and Gravitation. Inter-University Center for Astron. Astroph., Pune, India, P. 231–258 (1998).
16. Ashby N. Relativity in the Global Positioning System.  Living Rev. Relativ., 6: 1 (2003).
https://doi.org/10.12942/lrr-2003-1
17. Babyk Iu. V., Vavilova I. B. Comparison of Optical and X-ray Mass Estimates of the Chandra Galaxy Clusters at z < 0.1. Odessa Astron. Publ., 26:175-178 (2013).
18. Babyk Yu.V., Del Popolo A., Vavilova I. B. Chandra X-ray galaxy clusters at z < 1.4. Astron. Rep., 58(9):587-610 (2014).
https://doi.org/10.1134/S1063772914090017
19. Babyk I., Vavilova I. The distant galaxy cluster XLSSJ022403.9-041328 on the LX-TX-M scaling relations using Chandra and XMM- Newton observations. Astrophys. Space Sci., 353(2):613-619 (2014).
https://doi.org/10.1007/s10509-014-2057-x
20. Babyk I., Vavilova, I. The Chandra X-ray galaxy clusters at z<1.4: constraints on the evolution of LX-T Mg relations. Astrophys. Space Sci., 349(1):415-421 (2014).
https://doi.org/10.1007/s10509-013-1630-z
21. Barstow M. A., Bond H. E., Holberg J. B. et al. Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B. Mon. Not. Roy. Astron. Soc., 362:1134–1142 (2005).
https://doi.org/10.1111/j.1365-2966.2005.09359.x
22. Brault J. W. The gravitational redshift in the Solar spectrum. Doctoral dissertation. Princeton Univ, 1962, Abstract: Bull. Amer. Phys. Soc., 8:28 (1963).
23. Burgay M., D'Amico N., Possenti A. et al. An increased estimate of the merger rate of double neutron stars from observations of a highly rela¬tivistic system. Nature, 426:531–533 (2003).
https://doi.org/10.1038/nature02124
24. Cacciapuoti L. and Salomon Ch. Space clocks and fundamental tests: The ACES experiment. The European Physical Journal - Special Topics, 172:57–68 (2009).
25. Cottam J., Paerels F., Mendez M. Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star. Nature, 420: 51–54 (2002).
https://doi.org/10.1038/nature01159
26. Cuesta H.J.M., Salim J.M. Non-linear electrodynamics and the gravitational redshift of highly magnetized neutron stars. Mon. Not. R. Astron. Soc. 354: L55–L59 (2004).
27. Damour T., Taylor J. H. On the orbital period change of the binary pulsar RSR 1913+16. Astroph. J.,  366:501–511 (1991).
https://doi.org/10.1086/169585
28. Demorest P. B., Pennucci T., Ransom, S. M. et al. A two-solar-mass neutron star measured using Shapiro delay. Nature, 467 (7319): 1081–1083 (2010).
https://doi.org/10.1038/nature09466
29. Einstein A. Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys., 35:898–908 (1911).
https://doi.org/10.1002/andp.19113401005
30. Godone A., Novero C., Tavella P. Null gravitational redshift experi¬ment with nonidentical atomic clocks. Phys. Rev. D., 51: 319–323 (1995).
https://doi.org/10.1103/PhysRevD.51.319
31. Guinot B. Time scales in the context of general relativity. Phil. Trans. R. Soc. A., 369(1953): 4131-4142 (2011).
https://doi.org/10.1098/rsta.2011.0182
32. Hafele J. C., Keating R. E. Around the world atomic clocks: predicted relativistic time gains. Science (14.07.1972), 177(4044):166–168 (1972).
https://doi.org/10.1126/science.177.4044.166
33. Hogan M. T., McNamara B. R., Pulido F. A. et al. The Onset of Thermally Unstable Cooling from the Hot Atmospheres of Giant Galaxies in Clusters: Constraints on Feedback Models. Astrophys. J., 851(1), article id. 66, 20 pp. (2017).
https://doi.org/10.3847/1538-4357/aa9af3
34. Hulse R. A., Taylor J. H. Discovery of a pulsar in a binary system. Astrophys. J. Lett., 195: L51–L53 (1975).
https://doi.org/10.1086/181708
35. Iyer B.R.,  Bhawal B. Black holes, gravitational radiation and the Universe. Essays in honor of C.V. Vishveshwara. Springer-Science+Business Media, B.V. (1999)
36. Kasliwal M. M. et al. Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science (16 October 2017), eprint arXiv:1710.05436 (2017).
https://doi.org/10.1126/science.aap9455
37. Kramer M., Stairs I. H., Manchester R. N. et al. Tests of General Relativity from Timing the Double Pulsar. Science, 314(5796):97–102 (2006).
https://doi.org/10.1126/science.1132305 
38. Laurent Ph., Massonnet D., Cacciapuoti L., Salomon Ch. The ACES/PHARAO space mission. C. R. Phys., 16(5):540 – 552 (2015).
https://doi.org/10.1016/j.crhy.2015.05.002 
39. Lyne A. G., Burgay M., Kramer M. et al. A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science, 303(5661): 1153–1157 (2004).
https://doi.org/10.1126/science.1094645 
40. Masachika I., Tadayasu D., Masanobu O., Yoshitomo M., Hideyuki M., Shigetaka S. Estimation of the surface gravitational redshift of a neutron star with the broad spectral feature detected during the thermonuclear X-ray Burst. Retrieved from: http://lambda.phys.tohoku.ac.jp/nstar/content/files/NSMAT2016/Presentati....
41. Meynadier F.,  Delva P., le Poncin-Lafitte C., Guerlin C., Wolf P. Atomic Clock Ensemble in Space (ACES) data analysis. arXiv 1709.06491v1 (2017)
https://doi.org/10.1088/1361-6382/aaa279
42. Overduin, J. (2007, December). Testing Einstein. Retrieved from https://einstein.stanford.edu/SPACETIME/spacetime3.html
43. Pound R. V., Rebka G. A. Apparent weight of photons. Phys. Rev. Lett., 4(7): 337–341 (1960).
https://doi.org/10.1103/PhysRevLett.4.337 
44. Pound R. V., Snider J. L. Effect of Gravity on Nuclear Resonance. Phys. Rev. Lett., 13(18):539–540 (1964).
https://doi.org/10.1103/PhysRevLett.13.539 
45. Procyk R., Truong B. Gravitational Redshift. Retrieved from http://www.physics.brocku.ca/Courses/1P22_DAgostino/samples/GravRed.pdf
46. Pulatova N. G., Vavilova I. B., Sawangwit U. et al. The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky. Mon. Not. R. Astron. Soc., 447(3):2209-2223 (2015).
https://doi.org/10.1093/mnras/stu2556 
47. Rafikov R. R., Lai D. Effects of Pulsar Rotation on Timing Measurements of the Double Pulsar System J0737-3039. Astrophys. J., 641:438–446 (2006).
https://doi.org/10.1086/500346
48. Ransom S. M., Stairs I. H., Archibald A. M. et al. A millisecond pulsar in a stellar triple system. Nature, 505: 520–524 (2014).
https://doi.org/10.1038/nature12917 
49. Sanwal D., Pavlov G. G., Zavlin V. E., Teter M. A. Discovery of absorption features in spectrum of an isolated neutron star. Astroph. J., 574: L61–L64 (2002).
https://doi.org/10.1086/342368 
50. Šimkovič S., Teleki A.  Vssualization of the X-ray by gravitational redshift.
51. Shild A. Gravitational theories of the Whitehead type and the Principle of Equivalence. In: Evidence for Gravitational theories, Ed. Muller C.– New York: Academic Press, 1962.
52. Sigurdsson S., Richer H. B., Hansen B. M. et al. A young white dwarf companion to pulsar B1620–26: evidence for early planet formation. Science, 301: 193–196 (2003).
https://doi.org/10.1126/science.1086326 
53. Thorsett S. E., Arzoumanian Z., Camilo F., Lyne A. G. The triple pulsar system PSR B1620–26 in M4. Astrophys. J., 523: 763–770 (1999).
https://doi.org/10.1086/307771 
54. Touboul P., Metris G., Rodrigues M. et al. MICROSCOPE mission: first results of a space test of the Equivalence Principle. Phys. Rev. Lett., 119, article 231101 (2017).
https://doi.org/10.1103/PhysRevLett.119.231101 
55. Trimble V., Barstow M. Gravitational redshift and White Dwarf stars (2010). Einstein Online, 04. Retrieved from http://www.einstein-online.info/spotlights/redshift_ white_dwarfs University of Illinois (November, 1995).
56. Vavilova I.B., Bolotin Yu.L., Boyarsky A. M. et al. Dark matter: Observational manifestation and experimental searches. Kyiv, Akademperiodyka, 375 P. (2015).
57. Vavilova I. B., Vasylenko A. A., Babyk Iu. V., Pulatova N. G. X-Ray Spectral Properties of the Isolated AGNs: NGC 1050, NGC 2989, ESO 317-038, ESO 438-009. Odessa Astron. Publ., 28:150-153 (2015).
https://doi.org/10.18524/1810-4215.2015.28.70610 
58. Vessot R. F. C., Levine M. V. A test of the equivalence principle using a space-born clock. Gen. Rel. Grav., 10: 181 (1979).
https://doi.org/10.1007/BF00759854 
59. Vessot R. F. C., Levine M. V., Mattison E. M. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett., 45:2081–2084 (1980).
https://doi.org/10.1103/PhysRevLett.45.2081
60. Wilhelm K., Dwivedi B.N. 2013  On the Gravitational redshift. arxiv.org/abs/1708.06609
61. Will C. M. Theory and experiment in gravitational physics. Cambridge: Cambridge Univ. Press, 1993.
https://doi.org/10.1017/CBO9780511564246
62. Will C. M. The confrontation between General Relativity and experiment. Astroph. Space Sci., 283(4): 543–552 (2003).
https://doi.org/10.1023/A:1022585527826 
63. Will C. M. The confrontation between General Relativity and Experiment. In: General Relativity and John Archibald Wheeler, P.73–93. Eds. Ciufolini I., Matzner R. Springer, 547 p. (2010).
https://doi.org/10.1007/978-90-481-3735-0_6
64. Wojtak R., Hansen S. H., Hjorth J. Gravitational redshift of galaxies in clusters as predicted by general relativity. Nature, 477: 567–569 (2011).
https://doi.org/10.1038/nature10445 
65.  Zhao Xian-Feng. The surface gravitational redshift of the neutron star PSR J1614-2230. Acta Physica Polonica B44(2): 213-219 (2013).
https://doi.org/10.5506/APhysPolB.44.211 
66. Zhao Xian-Feng and Jia Huan-Yu. The surface gravitational redshift of the massive neutron star PSR J0348+0432. Rev. Mex. Astron. Astrofıs., 50: 103–108 (2014).
67. Zhu Hongyu, Alam Shadab, Croft Rupert A. C. et al. N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering. arXiv:1709.07859 (2017).
https://doi.org/10.1093/mnras/stx1644
68. Giammichele N., Charpinet S., Fontaine et al. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf. Nature. Letters, 07 November 2017,
https://doi.org/10.1038/nature25136 
69. Savchenko V., Ferrigno C., Kuulkers E. et al. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817. Astrophys. J. Let., 848(2), L15 (2017).
https://doi.org/10.3847/2041-8213/aa8f94