Ionospheric response to acoustic influence according to the data of DEMETER and Chibis-M microsatellites

1Selivanov, Yu.A, 2Rapoport, Yu.G, 1Cheremnykh, OK
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2018, 24 ;(6):41-56
Publication Language: Ukrainian
Active ground-space experiments carried out by the Space Research Institute of the National Academy of Sciences and the State Space Agency of Ukraine (SRI), the Lviv Center for the Space Research Institute of the National Academy of Sciences and the State Space Agency of Ukraine (LC SRI) and the Physical-Mechanical Institute of the National Academy of Sciences of Ukraine (FMI) in 2013 (involving the microsatellite Chibis -M), and in 2005 - LC SRI together with FMI (with the involvement of the microsatellite DEMETER) were devoted to the study of programmable infrasonic impact on the ionosphere of the Earth from the ground-based acoustic source of artificial origin. In this paper, attention is focused on the measurements made by these satellites during the active action of the ground-based acoustic generator. The description of the specifics of experiments, corresponding data analysis methods as well as discussion of their results is given.
                  An analysis of the records of satellite measurements of low-frequency variations of electric and magnetic fields in the ionosphere at altitudes of 420 km (MS Chibis-M) and 710 km (MS DEMETER) allowed detecting the passage of satellites through localized excitation areas that differ from the environment by another spatial-temporal variability. The analysis of spatio-temporal relations that existed during experiments allowed interpreting some of the observed events as candidates for excitations caused by the action of acoustic radiation of a ground-based acoustic emitter.
                 The data analysis was performed using implementations of sliding normalized median absolute deviation, wavelet entropy in a sliding window, and multifractal analysis. Recommendations for further analysis stages are given. The developed methodology and software will be used in researches of the space project "Ionosat-Micro".
Keywords: active ground-space experiments, ground acoustic generator, ionosphere, modern methods of data analysis, programmable infrasound influence
1. Gokhberg, M. B. and Shalimov, S. L. Lithosphere-ionosphere coupling and its modeling. Russian Journ. On Earth Sciences, 2: 95—108 (2000) [in Russian].
2. Emelyanov, L. Ya., Zivolup, T. G., Soroka, S. A., Cheremnykh, O. K., and Chernogor, L. F. Ground acoustic influence on the ionosphere: the results of observations by means of incoherent scattering and vertical sounding the methods. Radio Physics and Radio Astronomy, 20: 37—47 (2015) [in Russian].
3. Petrukhin, N. S., Pelinovsky, E. N. & Batsyna, E. K. Reflectionless acoustic-gravity waves in the Earth’s atmosphere. Geomagnetizm and Aeronomy, 52. N 6: 854—860 (2012) [in Russian].
4. Cheremnykh, О. К., Grimalsky, V. V., Ivantyshyn, О. L., Ivchenko, V. M., Kozak, L. V., Koshovy, V. V., Mezentsev, V. P., Melnik, М. О., Nogach, R. Т., Rapoport, Yu. G., Selivanov, Yu. A., Zhuk, I. T. Experimental and theoretical research of artificial acoustic modification of the atmosphere and ionosphere. Kosm. nauka tehnol., 21, N 1: 48—53 (2015) [in Ukrainian],
5. Cheremnykh, O. K., Klimov, S. I., Korepanov, V. E., Koshovy, V. V., Melnik, М. О., Ivantyshyn, О. L., Mezentsev, V. P., Nogach, R. Т., Rapoport, Yu. G., Selivanov, Yu. A., Semenov, L. P. Ground-space experiment for artificial acoustic modification of  ionosphere. Some preliminary results. Kosm. Nauka tehnol., 20, N 6: 60—74 (2014) [in Russian].
6. Cheremnykh, O. K., Selivanov, Yu. A., Zakharov, I. V. The influence of compressibility and non-isothermality of the atmosphere on the propagation of acoustic-gravity waves. Kosm. nauka tehnol., 16, N 1: 9—19 (2010) [in Russian].
7. Chernogor L. F. Geophysical effects and geo-ecological consequences of mass chemical explosions at military depots in the city of Artemovsk. Geophys. J., 26, N 4: 31—44 (2004) [in Russian].
8. Aoyama Tadashi, Iyemori Toshihiko, Nakanishi Kunihito, Nishioka Michi, Rosales Domingo, Veliz Oscar, Safor Erick Vidal. Localized field-aligned currents and 4-min TEC and ground magnetic oscillations during the 2015 eruption of Chile’s Calbuco volcano.  Earth, Planets and Space., 68: 148 (2016): 
9. Boateng Kwame Osei, Asubam Benjamin Weyori, Laar David Sanka. Improving the Effectiveness of the Median Filter. Int. J. Electronics and Communication Engineering., 5, N 1.: 85—97 (2012).
10. Cianchini G., De Santis A., Balasis G., Mandea M., Qamili E.. Entropy based analysis of satellite magnetic data for searching possible electromagnetic signatures due to big earthquakes. Proceedings of the 3rd IASME/WSEAS International Conference on Geology and Seismology (GES’09): 29—35.
11. Cussac T., Clair M.-A., Ultré-Guerard P., Buisson F., Lassalle-Balier G., Ledu M., Elisabelar C., Passot X., Rey N. The DEMETER microsatellite and ground segment. Planetary and Space Science, 54: 427 p. (2006).
12. Fedorenko A. K., Bespalova A. V., Cheremnykh O. K., Kryuchkov E. I. A dominant acoustic-gravity mode in the polar thermosphere. Ann. Geophys., 33: 101—108 (2015).
13. Infrasound Propagation [Electronic resource]. Geospace Science & Technology Branch (7630) / Space Science Division / The U.S. Naval Research Laboratory [Official Navy Website]. — URL: — Date of appeal: 20.08.2018.
14. Jakobsen J. Infrasound emission from wind turbines. Journal of low frequency noise, vibration and active control., 24, N 3: 145—155 (2005).
15. Karavosov R. K., Prozorov A. G. Nonordinary excitation of hydroacoustic resonance in the hydroturbine circuit of the Sayano-Shushenskaya hydroelectric power plant. J. Engineering Physics and Thermophysics, 84, N 3: 585—588 (2011).
16. Koshovy V. V. Radiophysical and Radio Astronomical Diagnostics of Ionospheric Effects Induced by a Ground-Based Infrasonic Transmitter (Preliminary Results), Radiophysics and Quantum Electronics, 42, N 8: 691 –703 (1999).
17. Lyubushin A. A., Kalab Z., Lednicka M.. Geomechanical Time Series and its Singularity Spectrum Analysis. Acta Geod. Geoph. Hung., 41, N 1: 1—9 (2012)
18. Pokhotelov O. A., Liperovskii V., Fomichev Y. P., Rubtsov L. N., Alimov O. A., Sharadze Z. S., Liperovskaya R. K. Ionospheric modification during the military actions in the Persian gulf zone. Doklady Akademii Nauk SSSR, 321. N 6: 1168—1172 (1991).
19. Pokhotelov О. A., Pilipenko V. A., Fedorov E. N., Stenflo L., Shukla Р.К. Induced Electromagnetic Turbulence in the Ionosphere and the Magnetosphere. Physica Scripta., 50: 600—605 (1994).
20. Quian Quiroga R., Rosso O. A., Başar E., Scürmann M. Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biol. Cybern., 84: 291—299 (2001).
21. Rapoport Yu. G., Cheremnykh O. K., Selivanov Yu. A., Grimalsky V. V., Ivchenko V. N., Milinevsky G. P., Tkachenko E. N., Melnik M. O., Mezentsev V. P., Karataeva L. M., Nogach R. T. Ionosphere as a Sensitive Indicator of Powerful Processes in the Lower Atmosphere / Lithosphere, Artificial Acoustic Influence and Space Weather. Electromagnetic Effects of the Earthquakes and Volcanoes EMSEV 2014 Workshop, Konstancin Jeziorna, 22—26.09.2014, Book of Abstracts, 133—135 (2014).
22. Rapoport, Y. G., Cheremnykh, O. K., Koshovy, V. V., Melnik, M. O., Ivantyshyn, O. L., Nogach, R. T., Selivanov, Y. A., Grimalsky, V. V., Mezentsev, V. P., Karataeva, L. M., Ivchenko, V. M., Milinevsky, G. P., Fedun, V. N., and Tkachenko, E. N. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment. Annales of Geophysicae, 35: 53—70 (2017).
23. Rapoport Yu. G., Cheremnykh O. K., Selivanov Yu. A., Fedorenko A. K., Ivchenko V. M., Grimalsky V. V., Tkachenko E. N. Oscillations of neutral and charged components of near-Earth plasma and effects of active media. UK-Ukraine Meeting on Solar physics and Space Science UKU SPSS/TASS-2011 (2011).
24. Rapoport Yu. G., Cheremnykh O. K., Selivanov Yu. A., Fedorenko A. K., Ivchenko V. M., Grimalsky V. V., Tkachenko E. N. Modeling AGW and PEMW in inhomogeneous atmosphere and ionosphere. Mathematical Methods in Electromagnetic Theory (MMET), 2012 IEEE Int. Conf., 2012/8/28: 577—580.
25. Rezek I. A., Roberts S. J. Stochastic Complexity Measures for Physiological Signal Analysis. IEEE Transactions on BME., 45, N 9: 1186—1191(1998). 
26. Serrano E., Figliola A. Wavelet Leaders: A new method to estimate the multifractal singularity spectra. Physica A., 388: 2793—2805 (2009).
27. Snively, J. B. Nonlinear Gravity Wave Forcing as a Source of Acoustic Waves in the Mesosphere, Thermosphere, and Ionosphere. Geophys. Res. Lett., 44: 23 (2017).
28. Zettergren M. D., Snively J. B. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J. Geophys. Res: Space Phys., 120, N 9: 8002—8024 (2015).
29. Zettergren M. D., Snively J. B., Komjathy A., Verkhoglyadova O. P. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes. J. Geophys Res: Space Phys., 122, N 2: 2272—2291 (2017).