Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features

1Khramtsov, V, 2Vavilova, IB, 2Dobrycheva, DV, 2Vasylenko, MYu., 2Melnyk, OV, 2Elyiv, AA, 3Akhmetov, VS, 1Dmytrenko, AM
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Institute of Astronomy of Kharkiv National University, Kharkiv, Ukraine
Space Sci. & Technol. 2022, 28 ;(5):27-55
https://doi.org/10.15407/knit2022.05.027
Publication Language: English
Abstract: 
This paper follows a series of our works on the applicability of various machine learning methods to morphological galaxy classification (Vavilova et al., 2021, 2022). We exploited the sample of ∼315800 low-redshift SDSS DR9 galaxies with absolute stellar magnitudes of −24m < Mr< −19.4m at 0.003 < z < 0.1 redshifts as a target data set for the CNN classifier. Because it is tightly overlapped with the Galaxy Zoo 2 (GZ2) sample, we use these annotated data as the training data set to classify galaxies into 34 detailed features.
            In the presence of a pronounced difference in visual parameters between galaxies from the GZ2 training data set and galaxies without known morphological parameters, we applied novel procedures, which allowed us for the first time to get rid of this difference for smaller and fainter SDSS galaxies with mr< 17.7. We describe in detail the adversarial validation technique as well as how we managed the optimal train-test split of galaxies from the training data set to verify our CNN model based on the DenseNet-201 realistically. We have also found optimal galaxy image transformations, which help increase the classifier’s generalization ability.
            We demonstrate for the first time that implication of the CNN model with a train-test split of data sets and size-changing function simulating a decrease in magnitude and size (data augmentation) significantly improves the classification of smaller and fainter SDSS galaxies. It can be considered as another way to improve the human bias for those galaxy images that had a poor vote classification in the GZ project. Such an approach, like autoimmunization, when the CNN classifier, trained on very good galaxy images, is able to retrain bad images from the same homogeneous sample, can be considered co-planar to other methods of combating such a  human bias.
            The most promising result is related to the CNN prediction probability in the classification of detailed features. The accuracy of the CNN classifier is in the range of 83.3–99.4 % depending on 32 features (exception is for “disturbed” (68.55 %) and “arms winding medium” (77.39 %) features). As a result, for the first time, we assigned the detailed morphological classification for more than 140000 low-redshift galaxies, especially at the fainter end. A visual inspection of the samples of galaxies with certain morphological features allowed us to reveal typical problem points of galaxy image classification by shape and features from the astronomical point of view.
            The morphological catalogs of low-redshift SDSS galaxies with the most interesting features are available through the UkrVO website (http://ukr-vo.org/starcats/galaxies/) and VizieR.
Keywords: Convolutional Neural Network, data analysis, galaxies, image processing, morphological classification
References: 

1. Agnello A., Kelly B. C., Treu T., Marshall P. J. (2015). Data mining for gravitationally lensed quasars, Mon. Not. R. Astron. Soc., 448 (2), 1446-1462.
https://doi.org/10.1093/mnras/stv037

doi:10.1093/mnras/stv037.
https://doi.org/10.1093/mnras/stv037

2. Ostrovski F., McMahon R. G., Connolly A. J. et al. (2017). VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning. Mon. Not. R. Astron. Soc., 465 (4), 4325-4334.
https://doi.org/10.1093/mnras/stw2958

doi:10.1093/mnras/stw2958.
https://doi.org/10.1093/mnras/stw2958

3. Lanusse F., Ma Q., Li N. et al. (2018). CMU DeepLens: deep learning for automatic image based galaxy-galaxy strong lens finding. Mon. Not. R. Astron. Soc., 473 (3), 3895-3906.
https://doi.org/10.1093/mnras/stx1665

doi:10.1093/mnras/stx1665.
https://doi.org/10.1093/mnras/stx1665

4. Jacobs C., Collett T., Glazebrook K. et al. (2019). Finding highredshift strong lenses in DES using convolutional neural networks. Mon. Not. R. Astron. Soc. 484 (4), 5330-5349.
https://doi.org/10.1093/mnras/stz272

doi:10.1093/mnras/stz272.
https://doi.org/10.1093/mnras/stz272

5. Khramtsov V., Sergeyev A., Spiniello C. et al. (2019). Kids-squad - ii. machine learning selection of bright extragalactic objects to search for new gravitationally lensed quasars. Astron. Astrophys., A632, A56.
https://doi.org/10.1051/0004-6361/201936006

doi:10.1051/0004-6361/201936006.
https://doi.org/10.1051/0004-6361/201936006

6. Petrillo C. E., Tortora C., Chatterjee S. et al. (2019). Testing convolutional neural networks for finding strong gravitational lenses in KiDS. Mon. Not. R. Astron. Soc., 482 (1), 807-820.

doi:10.1093/mnras/sty2683.
https://doi.org/10.1093/mnras/sty2683

7. Ribli D., Pataki B. A., Zorrilla Matilla J. M. et al. (2019). Weak lensing cosmology with convolutional neural networks on noisy data. Mon. Not. R. Astron. Soc., 490 (2), 1843-1860.
https://doi.org/10.1093/mnras/stz2610

doi:10.1093/mnras/stz2610.
https://doi.org/10.1093/mnras/stz2610

8. Pourrahmani M., Nayyeri H., Cooray A. (2018). LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses. Astrophys. J. , 856 (1), 68.
https://doi.org/10.3847/1538-4357/aaae6a

doi:10.3847/1538-4357/aaae6a.
https://doi.org/10.3847/1538-4357/aaae6a

9. Pasquet J., Bertin E., Treyer M. et al. (2019). Photometric redshifts from SDSS images using a convolutional neural network. Astron. Astrophys., 621, A26.
https://doi.org/10.1051/0004-6361/201833617

doi:10.1051/0004-6361/201833617.
https://doi.org/10.1051/0004-6361/201833617

10. Fussell L., Moews B. (2019). Forging new worlds: high-resolution synthetic galaxies with chained generative a dversarial networks. Mon. Not. R. Astron. Soc., 485 (3), 3203-3214.
https://doi.org/10.1093/mnras/stz602

doi:10.1093/mnras/stz602.
https://doi.org/10.1093/mnras/stz602

11. Salvato M., Ilbert O., Hoyle B. (2019). The many flavours of photometric redshifts. Nature Astronomy, 3, 212-222.
https://doi.org/10.1038/s41550-018-0478-0

doi:10.1038/s41550-018-0478-0.
https://doi.org/10.1038/s41550-018-0478-0

12. Bonnett C., Troxel M. A., Hartley W. et al. (2016). Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing, Phys. Rev. D, 94 (4), 042005.

doi:10.1103/PhysRevD.94.042005.
https://doi.org/10.1103/PhysRevD.94.042005

13. Amaro V., Cavuoti S., Brescia M. et al. (2019). Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies. Mon. Not. R. Astron. Soc., 482 (3), 3116-3134.
https://doi.org/10.1093/mnras/sty2922

doi:10.1093/mnras/sty2922.
https://doi.org/10.1093/mnras/sty2922

14. Sadeh I., Abdalla F. B., Lahav O. (2016). ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning. Publ. ASP, 128 (968), 104502.
https://doi.org/10.1088/1538-3873/128/968/104502

doi:10.1088/1538-3873/128/968/104502.
https://doi.org/10.1088/1538-3873/128/968/104502

15. Pasquet-Itam J., Pasquet J. (2018). Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82. Astron. Astrophys., 611, A97.
https://doi.org/10.1051/0004-6361/201731106

doi:10.1051/0004-6361/201731106.
https://doi.org/10.1051/0004-6361/201731106

16. K¨ugler S. D., Gianniotis N. (2016). Modelling multimodal photometric redshift regression with noisy observations. arXiv:1607.06059.

17. Speagle J. S., Eisenstein D. J. (2017). Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - II. Implementation. Mon. Not. R. Astron. Soc., 469 (1), 1205-1224.
https://doi.org/10.1093/mnras/stx510

doi:10.1093/mnras/stx510.
https://doi.org/10.1093/mnras/stx510

18. D'Isanto A., Cavuoti S., Gieseke F., Polsterer K. L. (2018). Return of the features. Efficient feature selection and interpretation for photometric redshifts. Astron. Astrophys., 616, A97.
https://doi.org/10.1051/0004-6361/201833103

doi:10.1051/0004-6361/201833103.
https://doi.org/10.1051/0004-6361/201833103

19. Elyiv A. A., Melnyk O. V., Vavilova I. B. et al. (2020). Machine-learning computation of distance modulus for local Galaxies. Astron. Astrophys., 635 (2020) A124.
https://doi.org/10.1051/0004-6361/201936883

doi:10.1051/0004-6361/201936883.
https://doi.org/10.1051/0004-6361/201936883

20. Rastegarnia F., Mirtorabi M. T., Moradi R. et al. (2022). Deep learning in searching the spectroscopic redshift of quasars. Mon. Not. R. Astron. Soc., 511 (3), 4490-4499.
https://doi.org/10.1093/mnras/stac076

doi:10.1093/mnras/stac076.
https://doi.org/10.1093/mnras/stac076

21. Elyiv A. A., Karachentsev I. D., Karachentseva V. E. et al. (2013). Low-density structures in the Local Universe. II. Nearby cosmic voids. Astrophys. Bull., 68 (1), 1-13.
https://doi.org/10.1134/S199034131301001X

doi:10.1134/S199034131301001X.
https://doi.org/10.1134/S199034131301001X

22. Koulouridis E., Plionis M., Melnyk O., Elyiv A. et al. (2014). X-ray AGN in the XMMLSS galaxy clusters: no evidence of AGN suppression. Astron. Astrophys., 567, A83.
https://doi.org/10.1051/0004-6361/201423601

doi:10.1051/0004-6361/201423601.
https://doi.org/10.1051/0004-6361/201423601

23. Elyiv A., Marulli F., Pollina G. et al. (2015). Cosmic voids detection without density measurements. Mon. Not. R. Astron. Soc., 448 (1), 642-653.
https://doi.org/10.1093/mnras/stv043

doi:10.1093/mnras/stv043.
https://doi.org/10.1093/mnras/stv043

24. Schawinski K., Zhang C., Zhang H. et al. (2017). Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit. Mon. Not. R. Astron. Soc., 467 (1), L110-L114.
https://doi.org/10.1093/mnrasl/slx008

doi:10.1093/mnrasl/slx008.
https://doi.org/10.1093/mnrasl/slx008

25. Vavilova I. B., Elyiv A. A., Vasylenko M. Y. (2018). Behind the Zone of Avoidance of the Milky Way: what can we Restore by Direct and Indirect Methods? Russian Radio Physics and Radio Astronomy, 23 (4), 244-257.
https://doi.org/10.15407/rpra23.04.244

doi:10.15407/rpra23.04.244.
https://doi.org/10.15407/rpra23.04.244

26. Rodr'ıguez A. C., Kacprzak T., Lucchi A. et al. (2018). Fast cosmic web simulations with generative adversarial networks. Comput. Astrophys. Cosmol., 5 (1), 4.
https://doi.org/10.1186/s40668-018-0026-4

doi:10.1186/s40668-018-0026-4.
https://doi.org/10.1186/s40668-018-0026-4

27. Khramtsov V., Akhmetov V., Fedorov P. (2020). The Northern Extragalactic WISE Ч Pan-STARRS (NEWS) catalogue. Machine-learning identification of 40 million extragalactic objects. Astron. Astrophys., 644, A69.
https://doi.org/10.1051/0004-6361/201834122

doi: 10.1051/0004-6361/201834122.
https://doi.org/10.1051/0004-6361/201834122

28. Hong S. E., Jeong D., Hwang H. S., Kim J (2021). Revealing the Local Cosmic Web from Galaxies by Deep Learning, Astrophys. J., 913 (1), 76.
https://doi.org/10.3847/1538-4357/abf040

doi:10.3847/1538-4357/abf040.
https://doi.org/10.3847/1538-4357/abf040

29. Khramtsov V., Spiniello C., Agnello A., Sergeyev A. (2021). VEXAS: VISTA EXtension to Auxiliary Surveys. Data Release 2: Machine-learning based classification of sources in the Southern Hemisphere. Astron. Astrophys., 651, A69.
https://doi.org/10.1051/0004-6361/202040131

doi:10.1051/0004-6361/202040131.
https://doi.org/10.1051/0004-6361/202040131

30. Diakogiannis F. I., Lewis G. F., Ibata R. A. et al. (2019). Reliable mass calculation in spherical gravitating Systems. Mon. Not. R. Astron. Soc., 482 (3), 3356-3372.
https://doi.org/10.1093/mnras/sty2931

doi:10.1093/mnras/sty2931.
https://doi.org/10.1093/mnras/sty2931

31. Tsizh M., Novosyadlyj B., Holovatch Y., Libeskind N. I. (2020). Large-scale structures in the ΛCDM Universe: network analysis and machine learning. Mon. Not. R. Astron. Soc., 495 (1), 1311-1320.
https://doi.org/10.1093/mnras/staa1030

doi:10.1093/mnras/staa1030.
https://doi.org/10.1093/mnras/staa1030

32. Chen Y., Mo H. J., Li C. et al. (2020). Relating the Structure of Dark Matter Halos to Their Assembly and Environment. Astrophys. J., 899 (1), 81.
https://doi.org/10.3847/1538-4357/aba597

doi:10.3847/1538-4357/aba597.
https://doi.org/10.3847/1538-4357/aba597

33. Moriwaki K., Shirasaki M., Yoshida N. (2021). Deep Learning for Line Intensity Mapping Observations: Information Extraction from Noisy Maps, Astrophys. J. Let., 906 (1), L1.
https://doi.org/10.3847/2041-8213/abd17f

doi:10.3847/2041-8213/abd17f.
https://doi.org/10.3847/2041-8213/abd17f

34. Flamary R. (2016). Astronomical image reconstruction with convolutional neural networks. arXiv:1612.04526.
https://doi.org/10.23919/EUSIPCO.2017.8081654

35. Kremer J., Stensbo-Smidt K., Gieseke F. et al. (2017). Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. arXiv:1704.04650.
https://doi.org/10.1109/MIS.2017.40

36. Savanevych V. E., Khlamov S. V., Vavilova I. B. et al. (2018). A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames. Astron. Astrophys., 609, A54.
https://doi.org/10.1051/0004-6361/201630323

doi:10.1051/0004-6361/201630323.
https://doi.org/10.1051/0004-6361/201630323

37. Villarroel B., Soodla J., Comer'on S. et al. (2020). The Vanishing and Appearing Sources during a Century of Observations Project. I. USNO Objects Missing in Modern Sky Surveys and Follow-up Observations of a "Missing Star", 159 (1), 8.
https://doi.org/10.3847/1538-3881/ab570f

doi:10.3847/1538-3881/ab570f.
https://doi.org/10.3847/1538-3881/ab570f

38. Pavlenko Y., Kulyk I., Shubina O. et al. (2022). New exocomets of β Pic, 660, A49.
https://doi.org/10.1051/0004-6361/202142111

doi:10.1051/0004-6361/202142111.
https://doi.org/10.1051/0004-6361/202142111

39. Reiman D. M., G¨ohre B. E. (2019). Deblending galaxy superpositions with branched generative adversarial networks. Mon. Not. R. Astron. Soc.. 485 (2), 2617-2627.
https://doi.org/10.1093/mnras/stz575

doi:10.1093/mnras/stz575.
https://doi.org/10.1093/mnras/stz575

40. Buchanan J. J., Schneider M. D., Armstrong R. E. et al. (2021). Gaussian Process Classification for Galaxy Blend Identification in LSST. arXiv: 2107.09246.

41. El Bouchefry K., de Souza R. S. (2020). Learning in Big Data: Introduction to Machine Learning, in: P. ˇSkoda, F. Adam (Eds.), Knowledge Discovery in Big Data from Astronomy and Earth Observation, 2020, pp. 225-249.
https://doi.org/10.1016/B978-0-12-819154-5.00023-0

doi:10.1016/B978-0-12-819154-5.00023-0.
https://doi.org/10.1016/B978-0-12-819154-5.00023-0

42. Burgazli A., Sergijenko O., Vavilova I. (2022). Machine learning in cosmology and gravitational wave astronomy: recent trends. In: Horizons in Computer Science Research. Ed. T.S. Clary, Vol. 22., Chapter 7, p. 193-240. New York, Nova Science Publisher Inc.

43. Kang S.-J., Fan J.H., Mao W. et al. (2019). Evaluating the Optical Classification of Fermi BCUs Using Machine Learning. Astrophys. J., 872 (2), 189. arXiv:1902.07717.
https://doi.org/10.3847/1538-4357/ab0383

doi:10.3847/1538-4357/ab0383.
https://doi.org/10.3847/1538-4357/ab0383

44. Krause M., Pueschel E., Maier G. (2017). Improved γ/hadron separation for the detection of faint γ-ray sources using boosted decision trees. Astroparticle Phys., 89, 1-9. doi:10.1016/j.astropartphys.2017.01.004.
https://doi.org/10.1016/j.astropartphys.2017.01.004

45. Ruhe T. (2020). Application of machine learning algorithms in imaging Cherenkov and neutrino astronomy, Int. J. Mod. Phys. A, 35 (33), 2043004-778.
https://doi.org/10.1142/S0217751X20430046

doi:10.1142/S0217751X20430046.
https://doi.org/10.1142/S0217751X20430046

46. Morello G., Morris P. W., Van Dyk S. D. et al. (2018). Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars. Mon. Not. R. Astron. Soc., 473 (2), 2565-2574.
https://doi.org/10.1093/mnras/stx2474

doi:10.1093/mnras/stx2474.
https://doi.org/10.1093/mnras/stx2474

47. Ciuca R., Hern'andez O. F. (2017). A Bayesian framework for cosmic string searches in CMB maps, J. Cosm. Astropart. Phys., 2017 (8), 028.
https://doi.org/10.1088/1475-7516/2017/08/028

doi:10.1088/1475-7516/2017/08/028.
https://doi.org/10.1088/1475-7516/2017/08/028

48. Aniyan A. K., Thorat K. (2017). Classifying Radio Galaxies with the Convolutional Neural Network, Astrophys. J. Supl., 230 (2), 20.
https://doi.org/10.3847/1538-4365/aa7333

doi:10.3847/1538-4365/aa7333.
https://doi.org/10.3847/1538-4365/aa7333

49. Lukic V., Br¨uggen M., Banfield J. K. et al. (2018). Radio Galaxy Zoo: compact and extended radio source classification with deep learning. Mon. Not. R. Astron. Soc., 476 (1), 246-260.
https://doi.org/10.1093/mnras/sty163

doi:10.1093/mnras/sty163.
https://doi.org/10.1093/mnras/sty163

50. Ma Z., Xu H., Zhu J. et al. (2019). A Machine Learning Based Morphological Classification of 14,245 Radio AGNs Selected from the Best-Heckman Sample. Astrophys. J. Suppl., 240 (2), 34.
https://doi.org/10.3847/1538-4365/aaf9a2

doi:10.3847/1538-4365/aaf9a2.
https://doi.org/10.3847/1538-4365/aaf9a2

51. Scaife A. M. M., Porter F. (2021). Fanaroff-Riley classification of radio galaxies using group-equivariant convolutional neural networks. Mon. Not. R. Astron. Soc., 503 (2), 2369-2379.
https://doi.org/10.1093/mnras/stab530

doi:10.1093/mnras/stab530.
https://doi.org/10.1093/mnras/stab530

52. Ciprijanovi'c A., Kafkes D., Downey K. et al. (2021). DeepMerge - II. Building robust deep learning algorithms for merging galaxy identification across domains. Mon. Not. R. Astron. Soc., 506 (1), 677-691.
https://doi.org/10.1093/mnras/stab1677

doi:10.1093/mnras/stab1677.
https://doi.org/10.1093/mnras/stab1677

53. Shamir L. (2021). Automatic identification of outliers in Hubble Space Telescope galaxy images. Mon. Not. R. Astron. Soc., 501 (4), 5229-5238.
https://doi.org/10.1093/mnras/staa4036

doi:10.1093/mnras/staa4036.
https://doi.org/10.1093/mnras/staa4036

54. Vavilova I. B., Dobrycheva D. V., Vasylenko M. Y. et al. (2021). Machine learning technique for morphological classification of galaxies from the SDSS. I. Photometry-based approach. Astron. Astrophys., 648, A122.
https://doi.org/10.1051/0004-6361/202038981

doi:10.1051/0004-6361/202038981.
https://doi.org/10.1051/0004-6361/202038981

55. Vavilova I. B., Khramtsov V., Dobrycheva D. V. et al. (2022). Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02

56. Walmsley M., Smith L., Lintott C. et al. (2020). Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning. Mon. Not. R. Astron. Soc., 491 (2), 1554-1574. doi:10.1093/mnras/stz2816.
https://doi.org/10.1093/mnras/stz2816

57. Muller A., Guido S. (2016). Introduction to Machine Learning with Python, O'Reilly Media.

58. Melnyk O. V., Dobrycheva D. V., Vavilova I. B. (2012). Morphology and color indices of galaxies in Pairs: Criteria for the classification of galaxies, Astrophysics, 55 (3), 293-305. doi:10.1007/s10511-012-9236-7.
https://doi.org/10.1007/s10511-012-9236-7

59. Dobrycheva D. V., Melnyk O. V., Vavilova I. B., Elyiv A. A. (2014). Environmental Properties of Galaxies at z ! 0.1 from the SDSS via the Voronoi Tessellation. Odessa Astron. Publ., 27, 26.

60. Dobrycheva D. V., Melnyk O. V., Vavilova I. B., Elyiv A. A. (2015). Environmental Density vs. Colour Indices of the Low Redshifts Galaxies. Astrophysics, 58 (2), 168-180. doi:10.1007/s10511-015-9373-x.
https://doi.org/10.1007/s10511-015-9373-x

61. Dobrycheva D. V., Vavilova I. B., Melnyk O. V., Elyiv A. A. (2017). Machine learning technique for morphological classification of galaxies at z 0.1 from the SDSS. arXiv:1712.08955.

62. Dobrycheva D. V. (2017). Morphological content and color indices bimodality of a new galaxy sample at the redshifts z

63. Dobrycheva D. V., Vavilova I. B., Melnyk O. V., Elyiv A. A. (2018). Morphological Type and Color Indices of the SDSS DR9 Galaxies at 0.02 https://doi.org/10.3103/S0884591318060028

doi:10.3103/S0884591318060028.
https://doi.org/10.3103/S0884591318060028

64. Vasylenko M. Y., Dobrycheva D. V., Vavilova I. B. et al. (2019). Verification of Machine Learning Methods for Binary Morphological Classification of Galaxies from SDSS. Odessa Astron. Publ., 32, 46.
https://doi.org/10.18524/1810-4215.2019.32.182538

doi:10.18524/1810-4215.2019.32.182538.
https://doi.org/10.18524/1810-4215.2019.32.182538

65. Khramtsov V., Dobrycheva D. V., Vasylenko M. Y., Akhmetov V. S. (2019). Deep learning for morphological classification of galaxies from SDSS, Odessa Astron. Publ., 32, 21.
https://doi.org/10.18524/1810-4215.2019.32.182092

doi:10.18524/1810-4215.2019.32.182092.
https://doi.org/10.18524/1810-4215.2019.32.182092

66. Vasylenko M., Dobrycheva D., Khramtsov V., Vavilova I. (2020). Deep Convolutional Neural Networks models for the binary morphological classification of SDSS-galaxies. Commun. BAO, 67, 354.
https://doi.org/10.52526/25792776-2020.67.2-354

doi:10.52526/25792776-2020.67.2-354.
https://doi.org/10.52526/25792776-2020.67.2-354

67. Vavilova I., Dobrycheva D., Vasylenko M. et al. (2020). Multiwavelength Extragalactic Surveys: Examples of Data Mining, In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, Eds. P. Skoda and F. Adam, Elsevier, Ch. 16, pp. 307-323.
https://doi.org/10.1016/B978-0-12-819154-5.00028-X

doi:10.1016/B978-0-12-819154-5.00028-X.
https://doi.org/10.1016/B978-0-12-819154-5.00028-X

68. Vavilova I., Elyiv A., Dobrycheva D., Melnyk O. (2021). The Voronoi tessellation method in astronomy, In: Intelligent Astrophysics, Eds. I. Zelinka, M. Brescia, D. Baron, Springer, Cham, Vol. 39, Ch. 3, pp. 57-79.
https://doi.org/10.1007/978-3-030-65867-0_3

doi:10.1007/978-3-030-65867-0\_3.
https://doi.org/10.1007/978-3-030-65867-0

69. Vavilova I. B., Dobrycheva D. V., Vasylenko M. Y. et al. (2021). VizieR Online Data Catalog: SDSS galaxies morphological classification (Vavilova+, 2021), VizieR Online Data Catalog (2021) J/A+A/648/A122.
https://doi.org/10.1051/0004-6361/202038981

70. Vavilova I. B., Khramtsov V., Dobrycheva D. V. et al. VizieR Online Data Catalog: Galaxies at 0.02

71. Willett K. W., Lintott C. J., Bamford S. P. et al. (2013). Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc., 435 (4), 2835-2860.
https://doi.org/10.1093/mnras/stt1458

doi:10.1093/mnras/stt1458.
https://doi.org/10.1093/mnras/stt1458

72. Blanton M. R., Dalcanton J., Eisenstein D. et al. (2001). The Luminosity Function of Galaxies in SDSS Commissioning Data. Astron. J., 121 (5), 2358-2380.
https://doi.org/10.1086/320405

doi:10.1086/320405.
https://doi.org/10.1086/320405

73. Yasuda N., Fukugita M.,. Narayanan V. K. et al. (2001). Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data. Astron. J., 122 (3), 1104-1124.
https://doi.org/10.1086/322093

doi:10.1086/322093.
https://doi.org/10.1086/322093

74. Walmsley M., Lintott C., Geron T. et al. (2021). Galaxy ZOO DECaLSs: Detailed visual morphology measurements from volunteers and deep learning for 314000 galaxies. arXiv:2102.08414.

75. Lupton R., Blanton M. R., Fekete G. et al. (2004). Preparing Red-Green-Blue Images from CCD Data. Publ. ASP, 116 (816), 133-137.
https://doi.org/10.1086/382245

doi:10.1086/382245.
https://doi.org/10.1086/382245

76. Wang N., Choi J., Brand D. et al. (2018). Training Deep Neural Networks with 8-bit Floating Point Numbers, arXiv e-prints. arXiv:1812.08011.

77. Ren W., Yu Y., Zhang J., Huang K. (2014). Learning convolutional nonlinear features for k nearest neighbor image classification, in: 22nd Int. Conf. on Pattern Recognition, 4358-4363.
https://doi.org/10.1109/ICPR.2014.746

78. Honghui S. (2016). Galaxy Classification with deep convolutional neural networks. Ph.D. thesis, University of Illinois at Urbana-Champaign.

79. Meyer B. J., Harwood B., Drummond T. (2018). Deep metric learning and image classification with nearest neighbour gaussian kernels, in: 25th IEEE Int. Conf. on Image Processing (ICIP), 151-155.
https://doi.org/10.1109/ICIP.2018.8451297

80. Pan J., Pham V., Dorairaj M. et al. (2020). Adversarial validation approach to concept drift problem in user targeting automation systems at uber. arXiv:2004.03045.

81. Bishop C. (1995). Neural networks for pattern recognition, Oxford University Press, USA.
https://doi.org/10.1201/9781420050646.ptb6

82. Dieleman S., Willett K. W., Dambre J. (2015). Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc., 450 (2), 1441-1459.
https://doi.org/10.1093/mnras/stv632

doi:10.1093/mnras/stv632.
https://doi.org/10.1093/mnras/stv632

83. He K., Zhang X., Ren S., Sun J. (2015). Deep residual learning for image recognition. arXiv:1512.03385.
https://doi.org/10.1109/CVPR.2016.90

84. Vega-Ferrero J., Dominguez Sanchez H., Bernardi M. et al. (2021). Huertas-Company, Pushing automated morphological classifications to their limits with the Dark Energy Survey. Mon. Not. R. Astron. Soc., 506 (2), 1927-1943.
https://doi.org/10.1093/mnras/stab594

doi:10.1093/mnras/stab594.
https://doi.org/10.1093/mnras/stab594

85. Bhambra P., Joachimi B., Lahav O. (2022). Explaining deep learning of galaxy morphology with saliency mapping, Mon. Not. R. Astron. Soc., 511 (4), 5032-5041.
https://doi.org/10.1093/mnras/stac368

doi:10.1093/mnras/stac368.
https://doi.org/10.1093/mnras/stac368

86. Gupta R., Srijith P. K., Desai S. (2022)., Galaxy morphology classification using neural ordinary differential equations. Astron. Comp., 38, 100543. doi:10.1016/j.ascom.2021.100543.
https://doi.org/10.1016/j.ascom.2021.100543

87. Huang G., Liu Z., van der Maaten L., Weinberger K. Q. (2018). Densely connected convolutional networks. arXiv:1608.06993.
https://doi.org/10.1109/CVPR.2017.243

88. Szegedy C., Vanhoucke V., Ioffe S. et al. (2015). Rethinking the inception architecture for computer vision (2015). arXiv:1512.00567.
https://doi.org/10.1109/CVPR.2016.308

89. Szegedy C., Ioffe S., Vanhoucke V., Alemi A. (2016). Inception-v4, inception resnet and the impact of residual connections on learning. arXiv:1602.07261.
https://doi.org/10.1609/aaai.v31i1.11231

90. Zoph B., Vasudevan V., Shlens J. (2017). Learning Transferable Architectures for Scalable Image Recognition. arXiv:1707.07012.
https://doi.org/10.1109/CVPR.2018.00907

91. Simonyan K., Zisserman A. (2015). Very deep convolutional networks for largescale image recognition. arXiv:1409.1556.

92. Chollet F. (2017). Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357.
https://doi.org/10.1109/CVPR.2017.195

93. Bradley A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (7), 1145-1159.
https://doi.org/10.1016/S0031-3203(96)00142-2

doi:10.1016/S0031-3203(96)00142-2.
https://doi.org/10.1016/S0031-3203(96)00142-2

94. Rahmani S., Teimoorinia H., Barmby P. (2018). Classifying galaxy spectra at 0.5https://doi.org/10.1093/mnras/sty1291

doi:10.1093/mnras/sty1291.
https://doi.org/10.1093/mnras/sty1291

95. Curti M., Hayden-Pawson C., Maiolino R. et al. (2022). What drives the scatter of local star-forming galaxies in the BPT diagrams? A Machine Learning based analysis. Mon. Not. R. Astron. Soc., 512 (3), 4136-4163.
https://doi.org/10.1093/mnras/stac544

doi:10.1093/mnras/stac544.
https://doi.org/10.1093/mnras/stac544

96. Shi F., Liu Y-Y., Sun G.L. et al. A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc., 453 (1), 122-127.
https://doi.org/10.1093/mnras/stv1617

doi:10.1093/mnras/stv1617.
https://doi.org/10.1093/mnras/stv1617

97. Tempel E., Saar E., Liivam¨agi L. J. et al. (2011). Galaxy morphology, luminosity, and environment in the SDSS DR7. Astron. Astrophys., 529 (2011) A53.
https://doi.org/10.1051/0004-6361/201016196

doi:10.1051/0004-6361/201016196.
https://doi.org/10.1051/0004-6361/201016196

98. Tojeiro R., Masters K. L., Richards J. et al. (2013). The different star formation histories of blue and red spiral and elliptical galaxies. Mon. Not. R. Astron. Soc., 432 (1), 359-373.
https://doi.org/10.1093/mnras/stt484

doi:10.1093/mnras/stt484.
https://doi.org/10.1093/mnras/stt484

99. Vavilova I. B., Ivashchenko G. Y., Babyk I. V. et al. (2015). The astrocosmic databases for multi-wavelength and cosmological properties of extragalactic sources, Kosm. Nauka Tekhnol., 21 (3), 94-107.
https://doi.org/10.15407/knit2015.05.094

doi:10.15407/knit2015.05.094.
https://doi.org/10.15407/knit2015.05.094

100. Guo R., Hao C.-N., Xia X. et al. (2020). Toward an Understanding of the Massive Red Spiral Galaxy Formation. Astrophys. J., 897 (2), 162.
https://doi.org/10.3847/1538-4357/ab9b75

doi:10.3847/1538-4357/ab9b75.
https://doi.org/10.3847/1538-4357/ab9b75

101. Mezcua M., Lobanov A. P., Mediavilla E., Karouzos M. (2014). Photometric Decomposition of Mergers in Disk Galaxies. Astrophys. J., 784 (1), 16.
https://doi.org/10.1088/0004-637X/784/1/16

doi:10.1088/0004-637X/784/1/16.
https://doi.org/10.1088/0004-637X/784/1/16

102. Simmons B. D., Lintott C., Willett K. W. et al. (2017). Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS. Mon. Not. R. Astron. Soc., 464 (4), 4420-4447.
https://doi.org/10.1093/mnras/stw2587

doi:10.1093/mnras/stw2587.
https://doi.org/10.1093/mnras/stw2587

103. Bottrell C., Hani M. H., Teimoorinia H. et al. (2019). Deep learning predictions of galaxy merger stage and the importance of observational realism. Mon. Not. R. Astron. Soc., 490 (4), 5390-5413.
https://doi.org/10.1093/mnras/stz2934

doi:10.1093/mnras/stz2934.
https://doi.org/10.1093/mnras/stz2934

104. Pearson W. J., Wang L., Trayford J. W. Petrillo E., van der Tak F.F.S. (2019). Identifying galaxy mergers in observations and simulations with deep learning. Astron. Astrophys., 626, A49.
https://doi.org/10.1051/0004-6361/201935355

doi:10.1051/0004-6361/201935355.
https://doi.org/10.1051/0004-6361/201935355

105. Cabrera-Vives G., Miller C. J., Schneider J. Systematic Labeling Bias in Galaxy Morphologies. Astron. J., 156 (6), 284.
https://doi.org/10.3847/1538-3881/aae9f4

doi:10.3847/1538-3881/aae9f4.
https://doi.org/10.3847/1538-3881/aae9f4

106. Hart R. E., Bamford S. P., Willett K. W. et al. (2016). Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias. Mon. Not. R. Astron. Soc., 461 (4), 3663-3682.
https://doi.org/10.1093/mnras/stw1588

doi:10.1093/mnras/stw1588.
https://doi.org/10.1093/mnras/stw1588

107. Tarsitano F., Bruderer C., Schawinski K., Hartley W. G. (2022). Image feature extraction and galaxy classification: a novel and efficient approach with automated machine learning. Mon. Not. R. Astron. Soc., 511 (3), 3330-3338.
https://doi.org/10.1093/mnras/stac233

doi:10.1093/mnras/stac233.
https://doi.org/10.1093/mnras/stac233

108. Gauthier A., Jain A., Noordeh E. (2016). Galaxy Morphology Classification. e-proceedings, 1-6.

URL http://cs229.stanford.edu/proj2016/report/GauthierJainNoordeh-GalaxyMorp...

109. Barchi P. H., de Carvalho R. R., Rosa R. R. et al. (2020). Machine and Deep Learning applied to galaxy morphology - A comparative study. Astron. Comp., 30, 100334.
https://doi.org/10.1016/j.ascom.2019.100334

doi:10.1016/j.ascom.2019.100334.
https://doi.org/10.1016/j.ascom.2019.100334

110. Mittal A., Soorya A., Nagrath P., Hemanth D. J. (2020). Data augmentation based morphological classification of galaxies using deep convolutional neural network. Earth Sci. Inform., 13, 601-617.
https://doi.org/10.1007/s12145-019-00434-8

doi:10.1007/s12145-019-00434-8.
https://doi.org/10.1007/s12145-019-00434-8

111. Sreejith S., Pereverzyev J., Kelvin L. S. et al. (2018). Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning. Mon. Not. R. Astron. Soc., 474 (4), 5232-5258.
https://doi.org/10.1093/mnras/stx2976

doi:10.1093/mnras/stx2976.
https://doi.org/10.1093/mnras/stx2976

112. Ghosh A., Urry C. M., Wang Z. et al. (2020). Galaxy Morphology Network: A Convolutional Neural Network Used to Study Morphology and Quenching in ∼100,000 SDSS and ∼20,000 CANDELS Galaxies. Astrophys. J., 895 (2), 112.
https://doi.org/10.3847/1538-4357/ab8a47

doi:10.3847/1538-4357/ab8a47.
https://doi.org/10.3847/1538-4357/ab8a47

113. Walmsley M., Scaife A. M. M., Lintott C. et al. (2022). Practical galaxy morphology tools from deep supervised representation learning. Mpn. Not. R. Astron. Soc., 513 (2) (2022) 1581-1599.
https://doi.org/10.1093/mnras/stac525

doi:10.1093/mnras/stac525.
https://doi.org/10.1093/mnras/stac525

114. Gauci A., Zarb Adami K., Abela J. (2010). Machine Learning for Galaxy Morphology Classification. arXiv:1005.0390.

115. Dom'ınguez S'anchez H., Huertas-Company M., Bernardi M. et al. (2018). Improving galaxy morphologies for SDSS with Deep Learning. Mon. Not. R. Astron. Soc., 476 (3), 3661-3676.
https://doi.org/10.1093/mnras/sty338

doi:10.1093/mnras/sty338.
https://doi.org/10.1093/mnras/sty338

116. Yao-Yu Lin J., S.-M. Liao, Huang H.-J. et al. (2021). Galaxy Morphological Classification with Efficient Vision Transformer. arXiv:2110.01024.

117. Karachentseva V. E., Vavilova I. B. (1994). Clustering of low surface brightness dwarf galaxies. I. General properties., Bull. SAO, 37, 98-118.

118. Karachentseva V. E., Vavilova I. B. (1995). Clustering of dwarf galaxies with low surface brightness. II. The Virgo cluster. Kinemat. Phys. Celest. Bodies, 11 (5), 38-48.

119. Sabatini S., Roberts S., Davies J. (2003). Dwarf LSB galaxies and their environment: The Virgo Cluster, the Ursa Major Cluster, isolated galaxies and voids. Astrophys. J. Supl. Ser., 285 (1), 97-106.
https://doi.org/10.1007/978-94-010-0107-6_13

doi:10.1023/A:1024609809391.
https://doi.org/10.1023/A:1024609809391

120. Du W., Cheng C., Wu H. et al. (2019). Low Surface Brightness Galaxy catalogue selected from the α.40-SDSS DR7 Survey and Tully-Fisher relation. Mon. Not. R. Astron. Soc., 483 (2), 1754-1795.
https://doi.org/10.1093/mnras/sty2976

doi:10.1093/mnras/sty2976.
https://doi.org/10.1093/mnras/sty2976

121. Zhu X.-P., Dai J.-M., Bian C.J. et al. (2019). Galaxy morphology classification with deep convolutional neural networks. Astrophys. Space Sci., 364 (4), 55.
https://doi.org/10.1007/s10509-019-3540-1

doi:10.1007/s10509-019-3540-1.
https://doi.org/10.1007/s10509-019-3540-1

122. Dhar S., Shamir L. (202). Systematic biases when using deep neural networks for annotating large catalogs of astronomical images. Astron. Comp., 38, 100545.
https://doi.org/10.1016/j.ascom.2022.100545

doi:10.1016/j.ascom.2022.100545.
https://doi.org/10.1016/j.ascom.2022.100545

123. Smethurst R. J., Masters K. L., Simmons B. D. et al. (2022). Quantifying the poor purity and completeness of morphological samples selected by galaxy colour. Mon. Not. R. Astron. Soc., 510 (3), 4126-4133.
https://doi.org/10.1093/mnras/stab3607

doi:10.1093/mnras/stab3607.
https://doi.org/10.1093/mnras/stab3607

124. Kautsch S. J., Grebel E. K., Barazza F. D. et al. (2006). A catalog of edge-on disk galaxies. From galaxies with a bulge to superthin galaxies. Astron. Astrophys., 445 (2), 765-778.
https://doi.org/10.1051/0004-6361:20053981

doi:10.1051/0004-6361:20053981.
https://doi.org/10.1051/0004-6361:20053981

125. Bizyaev D. V., Kautsch S. J., Mosenkov A. V. et al. (2014). The Catalog of Edge-on Disk Galaxies from SDSS. I. The Catalog and the Structural Parameters of Stellar Disks. Astrophys. J., 787 (1), 24.
https://doi.org/10.1088/0004-637X/787/1/24

doi:10.1088/0004-637X/787/1/24.
https://doi.org/10.1088/0004-637X/787/1/24

126. Lima-Dias C., Monachesi A., Torres-Flores, S. et al. (2021). An environmental dependence of the physical and structural properties in the Hydra cluster galaxies. Mon. Not. R. Astron. Soc., 500 (1), 1323-1339.
https://doi.org/10.1093/mnras/staa3326

doi:10.1093/mnras/staa3326.
https://doi.org/10.1093/mnras/staa3326

127. Dom'ınguez-S'anchez H., Huertas-Company M., Bernardi M. et al. (2019). Transfer learning for galaxy morphology from one survey to another. Mon. Not. R. Astron. Soc., 484 (1), 93-100.
https://doi.org/10.1093/mnras/sty3497

doi:10.1093/mnras/sty3497.
https://doi.org/10.1093/mnras/sty3497

128. Lingard T. K., Masters K. L., Krawczyk C. et al. (2020). Galaxy Zoo Builder: Four-component Photometric Decomposition of Spiral Galaxies Guided by Citizen Science. Astrophys. J., 900 (2), 178.
https://doi.org/10.3847/1538-4357/ab9d83

doi:10.3847/1538-4357/ab9d83.
https://doi.org/10.3847/1538-4357/ab9d83

129. Schawinski K., Urry C. M., Simmons B. D., et al. (2014). The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies. Mon. Not. R. Astron. Soc., 440 (1), 889-907.
https://doi.org/10.1093/mnras/stu327

doi:10.1093/mnras/stu327.
https://doi.org/10.1093/mnras/stu327

130. Madore B. F., Nelson E., Petrillo K. (2009). VizieR Online Data Catalog: Collisional ring galaxies atlas (Madore+, 2009), VizieR Online Data Catalog (2009) J/ApJS/181/572.
https://doi.org/10.1088/0067-0049/181/2/572

131. Smirnov D. V., Reshetnikov V. P. (2022). The luminosity function of ringed galaxies. arXiv:2209.06875.
https://doi.org/10.1093/mnras/stac2549

132. Hoyle B., Masters K. L., Nichol R. C. et al. (2011). Galaxy Zoo: bar lengths in local disc galaxies. Mon. Not. R. Astron. Soc., 415 (4), 3627-3640.
https://doi.org/10.1111/j.1365-2966.2011.18979.x

doi:10.1111/j.1365-2966.2011.18979.x.
https://doi.org/10.1111/j.1365-2966.2011.18979.x

133. Reza M. (2021). Galaxy morphology classification using automated machine learning. Astron. Comp., 37, 100492. doi:10.1016/j.ascom.2021.100492.
https://doi.org/10.1016/j.ascom.2021.100492

134. Vavilova I. B., Karachentseva V. E., Makarov D. I., Melnyk O. V. (2005). Triplets of Galaxies in the Local Supercluster. I. Kinematic and Virial Parameters. Kinemat. Fiz. Neb. Tel, 21 (1), 3-20.

135. Darg D. W., Kaviraj S., Lintott C. J. et al. (2010). Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies. Mon. Not. R. Astron. Soc., 401 (2), 1043-1056.
https://doi.org/10.1111/j.1365-2966.2009.15686.x

doi:10.1111/j.1365-2966.2009.15686.x.
https://doi.org/10.1111/j.1365-2966.2009.15686.x

136. Weston M. E., McIntosh D. H., Brodwin M. et al. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS. Mon. Not. R. Astron. Soc., 464 (4), 3882-3906.
https://doi.org/10.1093/mnras/stw2620

doi:10.1093/mnras/stw2620.
https://doi.org/10.1093/mnras/stw2620

137. Pearson W. J., Suelves L. E., Ho S. C. C. et al. (2022). North Ecliptic Pole merging galaxy catalogue. Astron. Astrophys., 661, A52.
https://doi.org/10.1051/0004-6361/202141013

doi:10.1051/0004-6361/202141013.
https://doi.org/10.1051/0004-6361/202141013

138. Ahn C. P., Alexandroff R., Allende Prieto C. et al. (2012). The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey. Astrophys. J. Supl., 203 (2), 21.
https://doi.org/10.1088/0067-0049/203/2/21

doi:10.1088/0067-0049/203/2/21.
https://doi.org/10.1088/0067-0049/203/2/21

139. Blanton M. R., Bershady M. A., Abolfathi B. et al. (2017). SDSS IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astron. J., 154, 28.
https://doi.org/10.3847/1538-3881/aa7567

doi:10.3847/1538-3881/aa7567.
https://doi.org/10.3847/1538-3881/aa7567

140. Wenger M., Ochsenbein F., Egret D. et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Supl., 143 (2000) 9-22.
https://doi.org/10.1051/aas:2000332

doi:10.1051/aas:2000332.
https://doi.org/10.1051/aas:2000332