Statistical characteristics of the geophysical fields disturbed by weather fronts

1Chernogor, LF
1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Space Sci. & Technol. 2024, 30 ;(3):09-09
Publication Language: Ukrainian
Abstract: 
The Earth (internal spheres)–atmosphere–ionosphere–magnetosphere (EAIM) formation is a single integrated system with direct and reverse, positive and negative coupling, as well as with their combination. The high-energy sources of natural and anthropogenic origins activate coupling between the components of the EAIM. The effects that the sources of various physical nature have on the EAIM system have been studied quite well, while the influence of the weather fronts and other powerful atmospheric sources on the EAIM system and its components has been studied only partly. The scientific objective of this study is to conduct statistical analysis of variations in the basic parameters of the geophysical fields, which accompany the movement of atmospheric fronts. The histograms have been constructed that show the atmospheric pressure difference, atmospheric temperature difference, duration of the action of the atmospheric front, and the rate of change in the pressure and temperature, as well as the histograms showing the distribution of variations in the atmospheric electric field, the atmospheric current density, and in the magnetic field. The analysis undertaken has shown that these parameters exhibit variations within a broad range of values. The mean values of these parameters are estimated to be 145 Pa, 6°C, 70 min, 2.4 Pa/min, 0.23°C/min, 3.2 kV/m, 63 nA/m2, and 20 nT, respectively. The analysis of the scatter diagrams shows that the correlation between the variation in physical parameters is almost always absent. This means that a single governing parameter along the path of the atmospheric front does not exist. A simplified analytical relation has been obtained for estimating the perturbation in the electric field strength caused by the atmospheric front, which yields ~6–60 kV/m values that increase by an order of magnitude during thunderstorms. Under disturbed conditions, the atmospheric current density is shown to increase from 10–12 A/m2 to 10–11–10–10 A/m2. The following three mechanisms of an increase in the magnetic induction under the influence of the atmospheric front are considered: the disturbances of the external current density, electromagnetic induction, and the magnetic effect of turbulence. All these mechanisms yield the value of the effect less than ~1 nT. Only the magnetic effect of the ionosphere can explain an increase of 10–70 nT in the magnetic field variations. The energetics of the pressure, temperature, electric, and magnetic fields has been estimated to be (~1016–1017 J, ~1013–1014 W), (~1018–1019 J, 1015–1016 W), (~109–1011 J, ~106–108 W), (~1010–1011 J, 107–108 W), respectively. The following channels have been validated through which the components of the EAIM system couple under the action of atmospheric fronts: atmospheric pressure differences, ionospheric electron density differences, the generation of infrasound and gravity waves, the generation of electromagnetic waves by lightning flashes, and the perturbations in the global electric circuit.
Keywords: atmosphere at the air-earth boundary, EAIM system, geophysical fields, histogram, scatter diagram, statistical characteristics, weather front
References: 
1. Avdyushin S.I., Sedunov Yu. S., Borisenkov E. P. et al., eds. (1991). Atmosphere. Handbook. (Reference Data and Models). (Leningrad: Gidrometeoizdat.) [in Russian].
2. Burmaka V. P., Taran, V. I., Chernogor L. F. (2004). Ionospheric Wave Disturbances Accompanied by Rocket Launches against a Background of Natural Transient Processes. Geomag. Aeron. 44(4), 476—491.
3. Burmaka V. P., Domnin I. F., Uryadov V. P., Chernogor L. F. (2009). Variations in the Parameters of Scattered Signals and the Ionosphere Connected with Plasma Modification by High-Power Radio Waves. Radiophys. Quantum Electron. 52(11), 774—795. DOI:10.1007/s11141-010-9191-2
4. Garmash K. P., Chernogor L. F. (1998). Near-Earth effects which accompanied high-powerful radio emission action. Zarubezhnaya radioelectronika. Uspekhi sovremennoi radioelektroniki. 6, 17—40. [in Russian].
5. Garmash K. P., Chernogor L. F. (1998). Electromagnetic and geophysics effects in near-Earth plasma, which accompanied high-powerful radio emission action. Electromagnitnye yavleniya. 1(1), 90—110. [in Russian].
6. Gossard E. E., Hooke W. H. Waves in the Atmosphere. New York: Elsevier, 1975. 456 p.
7. Domnin I. F., Panasenko S. V., Uryadov V. P., Chernogor L. F. (2012). Results of radiophysical studies of the wave processes in the ionospheric plasma during its heating by high-power radio emission of the Sura facility. Radiophys. Quantum Electron. 55(4), 253—265. DOI:10.1007/s11141-012-9364-2
8. Imyanitov I. M., Shifrin K. S. Present State of Research on Atmospheric Electricity. Phys. Usp. 1962. 76, № 4. С. 593—642. DOI:10.3367/UFNr.0076.196204a.0593
9 Soloviev S. P., Rybnov Yu. S., Kharlamov V. A. (2015). The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. Adushkin, G. G. Kocheryan, eds. Abstracts of 3rd All-Russian Seminar–Meeting on Trigger Effects in Geosystems. Moscow, Russia: GEOS Publ. p. 71. [in Russian].
10. Soloviev S. P., Rybnov Yu. S., Kharlamov V. A. (2015). The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. Adushkin, G. G. Kocheryan, eds. Trigger effects in geosystems. Proceedings of the 3rd All-Russia Meeting. Moskow, Russia: GEOS Publ., 317—326. [in Russian].
11. Somsikov V. M. (1983). Solar terminator and dynamic phenomena in the atmosphere. Alma-Ata, Kazakhstan: Nauka Publ. [in Russian].
12. Somsikov V. M. (1991). Waves in the Atmosphere Caused by the Solar Terminator: A Review. Geomag. Aeron. 31(1), 1—12. [in Russian].
13. Spivak A. A., Loktev D. N., Rybnov Yu. S., Soloviev S. P., Kharlamov V. A. (2016). Geophysical fields of a megalopolis. Izv. Atmos. Ocean. Phys. 52(8), 841—852. DOI:10.1134/S0001433816080107
14. Spivak A. A., Rybnov Yu. S., Soloviev S. P., Kharlamov V. A. (2017). Acoustic and electric precursors of heavy thunderstorm under megalopolis conditions. Geophysical processes and biosphere. 16(4), 81—91. [in Russian]. DOI:10.21455/GPB2017.4-7
15. Spivak A. A., Rybnov Yu. S., Kharlamov V. A. (2018). Variations in Geophysical Fields during Hurricanes and Squalls. Dokl. Earth Sci. 480, 788—791. DOI:10.1134/S1028334X18060193
16. Spivak A. A., Riabova S. A., Kharlamov V. A. (2019). The Electric Field in the Surface Atmosphere of the Megapolis of Moscow. Geomagn. Aeron. 59(4), 467—478. DOI:10.1134/S0016793219040169
17. Spivak A. A., Riabova S. A. (2021). Electrical and Geomagnetic Effects during Powerful Atmospheric Fronts. Dynamic processes in geospheres. 13, 123—131. DOI:10.26006/22228535_2021_1_123
18. Chalmers J A. (1967). Atmospheric electricity. Oxford, New York: Pergamon Press.
19. Chekryzhov V. M., Svirkunov P. N., Kozlov S. V. (2019). The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. 59(1), 53—61. DOI:10.1134/S0016793219010031
20. Chernogor L. F. (2004). Geophysical effects and geoecological consequences of multiple chemical explosions at ammunition dumps in Artemovsk. Geofizicheskiy Zhurnal. 26(4), 31—44. [in Russian].
21. Chernogor L. F. (2004). Geophysical Effects and Ecological Consequences of Fire and Explosions of Ammunitions at a Military Base Near Melitopol. Geofizicheskiy Zhurnal. 26(6), 61—73. [in Russian].
22. Chernogor L. F. (2006). The tropical cyclone as an element of the Earth – atmosphere – ionosphere – magnetosphere system. Space Sci. Tech. 12(2—3), 16—36. [in Russian]. DOI:10.15407/knit2006.02.016
23. Chernogor L. F. Shamota M. A. (2009). Geomagnetic pulsations associated with solar terminators near Kharkiv city. 1. Spectral analysis. Space Sci. Tech. 15(5), 43—51. [in Russian]. DOI:10.15407/knit2009.05.043
24. Chernogor L. F., Shamota M. A. (2009). Geomagnetic pulsations associated with solar terminators near Kharkiv city. 2. Statistical analysis. Space Sci. Tech. 15(6), 14—19. [in Russian]. DOI:10.15407/knit2009.06.014
25. Chernogor L. F. (2009). Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. [in Russian].
26. Chernogor L. F., Vertogradov G. G., Uryadov V. P., Vertogradova E. G., Shamota M. A. (2011). Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. 53(12), 688—705. DOI:10.1007/s11141-011-9262-z
27. Chernogor L. F., Frolov V. L., Komrakov G. P., Pushin V. F. (2011). Variations in the ionospheric wave perturbation spectrum during periodic heating of the plasma by high-power high-frequency radio waves. Radiophys. Quantum Electron. 54(2), 75—88. DOI:10.1007/s11141-011-9272-x
28. Chernogor L. F., Frolov V. L. (2012). Traveling ionospheric disturbances generated due to periodic plasma heating by high-power high-frequency radiation. Radiophys. Quantum Electron. 55(1—2), 13—32. DOI:10.1007/s11141-012-9346-4
29. Chernogor L. F., Frolov V. L., Pushin V. F. (2012). Infrasound oscillations in the ionosphere affected by high-power radio waves. Radiophys. Quantum Electron. 55(5), 296—308. DOI:10.1007/s11141-012-9369-x
30. Chernogor L. F. (2012). Geomagnetic pulsations accompanied the solar terminator moving through magneto conjugate region. Radio Phys. Radio Astron. 17(1), 57—66. [in Russian].
31. Chernogor L. F. (2012). Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].
32. Chernogor L. F., Frolov V. L. (2013). Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation. Radiophys. Quantum Electron. 56(4), 197—215. DOI:10.1007/s11141-013-9426-0
33. Chernogor L. F., Frolov V. L. (2014). Geomagnetic Pulsation Amplitude and Spectrum Variations Accompanying the Ionospheric Heating by High-Power Radio waves from the Sura Facility. Radiophys. Quantum Electron. 57(5), 340—359. DOI:10.1007/s11141-014-9518-5
34. Chernogor L. F. (2014). Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. [in Russian].
35. Chernogor L. F., Panasenko S. V., Frolov V. L., Domnin I. F. (2015). Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. 58(2), 79—91. DOI:10.1007/s11141-015-9583-4
36. Chernogor L. F., Garmash K. P. (2018). Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. 58(5), 673—685. DOI:10.1134/S0016793218050031
37. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2018). Parameters of infrasonic signals generated in the atmosphere by multiple explosions at an ammunition depot. Radio Phys. Radio Astron. 23(4), 280—293. [in Russian]. DOI:10.15407/rpra23.04.280
38. Chernogor L. F. (2018). Physical effects of the Romanian meteoroid. 1. Space Sci. Technol. 24(1), 49—70. [in Russian]. DOI:10.15407/knit2018.01.049
39. Chernogor L. F. (2018). Physical effects of the Romanian meteoroid. 2. Space Sci. Technol. 24(2), 18—35. [in Russian]. DOI:10.15407/knit2018.02.018
40. Chernogor L. F. (2019). Physical Effects of the Lipetsk Meteoroid: 1. Kinematics and Physics of Celestial Bodies. 35(4), 174—188. DOI:10.3103/S0884591319040020
41. Chernogor L. F. (2019). Physical Effects of the Lipetsk Meteoroid: 2. Kinematics and Physics of Celestial Bodies. 35(5), 217—230. DOI:10.3103/S0884591319050027
42. Chernogor L. F. (2019). Physical Effects of the Lipetsk Meteoroid: 3. Kinematics and Physics of Celestial Bodies. 35(6), 271—285. DOI:10.3103/S0884591319060023
43. Chernogor L. F., Garmash K. P., Frolov V. L. (2019). Large-scale disturbances in the lower and middle ionosphere accompanying its modification by the Sura heater. Radiophys. Quantum Electron. 62(6), 395—411. DOI:10.1007/s11141-019-09986-7
44. Chornogor L. F., Liashchuk O. I., Shevelev M. B. (2020). Parameters of the infrasonic signal generated by the Kamchatka meteoroid. Kinematics and Physics of Celestial Bodies. 36(5), 31—54. DOI:10.15407/kfnt2020.05.031
45. Chornogor L. F. (2021). Physics of geospace storms. Space Sci. Technol. 27(1)(128), 3—77. DOI:10.15407/knit2021.01.003
46. Chornogor L. F. (2022). Kamchatka Meteoroid Effects in the Geomagnetic Field. Kinematics and Physics of Celestial Bodies. 38(1), 35—70. DOI:10.15407/kfnt2022.01.037
47. Chornogor L. F., Garmash K. P., Leus S. G., Luo Y., Podnos V. A., Tsymbal A. M., Shevelev M. B. (2022). Spectral content of fluctuations in the geomagnetic field during the course of March 21–23, 2017 geospace storms. Visnyk of V. N. Karazin Kharkiv National University, series «Radio Physics and Electronics». 36. [In press].
48. Chernogor L. F. (2022). Physical Effects of the Yushu Meteoroid: 1. Kinematics and Physics of Celestial Bodies. 38(3), 132—147. DOI:10.3103/S0884591322030035
49. Chernogor L. F., Shevelev M. B. (2022). A statistical study of the explosive waves launched by the Tonga super-volcano on January 15, 2022. Space science and technology. [In press].
50. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. M., Lizunov G. V., Groves K., Moldwin M. (2004). Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. 9(2), 130—152. [in Russian].
51. Astafyeva E., Maletckii B., Mikesell T. D., Munaibari E., Ravanelli M., Coisson P., Manta F., Rolland L. (2022). The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophysical Research Letters. 49(10), e2022GL098827. DOI:10.1029/2022GL098827
52. Balachandran N. K., Donn W. L., Rind D. H. (1977). Concorde Sonic Booms as an Atmospheric Probe. Science. 197(4298), 47—49. DOI:10.1126/science.197.4298.47
53. Che I.-Y., Park J., Kim I., Kim T. S., Lee H.-I. (2014). Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int. 198(1), 495—503. DOI:10.1093/gji/ggu150
54. Chernogor L. F., Blaunstein N. (2014). Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.
55. Chernogor L. F., Garmash K. P., Lazorenko O. V., Onishchenko A. A. (2018). Multi-Fractal Analysis of the Earth’s Electromagnetic Field Time Variations Caused by the Powerful Geospace Storm Occurred on September 7 – 8, 2017. Problems an Atomic Science and Technology. 116(4), 118—121.
56. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y., Luo Y. (2021). Supertyphoon Hagibis action in the ionosphere on 6–13 October 2019: Results from multi-frequency multiple path sounding at oblique incidence. Advances in Space Research. 67(8), 2439—2469. DOI:10.1016/j.asr.2021.01.038
57. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y., Luo Y. (2022). Disturbances in the ionosphere that accompanied typhoon activity in the vicinity of China in September 2019. Radio Science. 57, e2022RS007431. DOI:10.1029/2022RS007431
58. Chernogor L. F., Zheng Y., Guo Q., Luo Y., Garmash K. P., Rozumenko V. T. (2022). Features of Ionospheric and Magnetic Effects of August 5–6, 2019 Noticeable Geospace Storm Over China and Ukraine. In: Kosterov A., Bobrov N., Gordeev E., Kulakov E., Lyskova E., Mironova I. (eds) Problems of Geocosmos–2020. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. 379—396. DOI:10.1007/978-3-030-91467-7_28
59. Chou M.-Y., Lin C. C. H., Yue J., Chang L. C., Tsai H.-F., Chen C.-H. (2017). Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. 44(15), 7569—7577. DOI:10.1002/2017GL073961
60. Chou M.-Y., Lin C. C. H., Shen M.-H., Yue J., Huba J. D., Chen C.-H. (2018). Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett. 45(13), 6334—6342. DOI:10.1029/2018GL078088
61. Chou M.-Y., Shen M.-H., Lin C. C. H., Yue J., Chen C.-H., Liu J.-Y., Lin J.-T. (2018). Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather. 16(2), 172—184. DOI:10.1002/2017SW001738
62. Ding F., Wan W., Mao T., Wang M., Ning B., Zhao B., Xiong, B. (2014). Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. 41(10), 3351—3358. DOI:10.1002/2014GL060107
63. Donn W. L., Ewing M. (1962). Atmospheric waves from nuclear explosions. J. Geophys. Res. 67(5), 1855—1866. DOI:10.1029/JZ067i005p01855
64. Donn W. L., Ewing M. (1962). Atmospheric Waves from Nuclear Explosions – Part II: The Soviet Test of 30 October 1961. J. Atmos. Sci. 19(3), 264—273. DOI:10.1175/1520-0469(1962)019%3C0264:AWFNEI%3E2.0.CO;2
65. Donn W. L. (1978). Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Am. Sci. 66(6), 724—733.
66. Donn W. L., Rind D. (1979). Monitoring Stratospheric Winds with Concorde-Generated Infrasound. J. Appl. Meteor. 18(7), 945—952. DOI:10.1175/1520-0450(1979)018%3C0945:MSWWCG%3E2.0.CO;2
67. Farges T., Blanc E. (2010). Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res. Space Phys. 115(A6), A00E31. DOI:10.1029/2009JA014700
68. Farkas E. (1962). Transit of Pressure Waves through New Zealand from the Soviet 50 Megaton Bomb Explosion. Nature. 193(4817), 765—766. DOI:10.1038/193765a0
69. Garcés M., Caron P., Hetzer C., Le Pichon A., Bass H., Drob D., Bhattacharyya J. (2005). Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. 86(35), 317—320. DOI:10.1029/2005EO350002
70. Gardiner G. W. (1962). Effects of the nuclear explosion of 30 October 1961. J. Atmos. Terr. Phys. 24(11), 990—993. DOI:10.1016/0021-9169(62)90146-0
71. Gibbons S. J., Ringdal F., Kværna T. (2007). Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions. J. Acoust. Soc. Am. 122(5), EL158. DOI:10.1121/1.2784533
72. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng, Yu. (2019). Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. 186, 88—103. DOI:10.1016/j.jastp.2019.02.003
73. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Science. 55(2), e2019RS006866. DOI: 10.1029/2019RS006866
74. Infrasound monitoring for atmospheric studies. (2019). A. Le Pichon, E. Blanc, A. Hauchecorne, eds. Switzerland: Springer Int. Publ. 1167 p. DOI:10.1007/978-3-319-75140-5
75. Kakinami Y., Yamamoto M., Chen C.-H., Watanabe S., Lin C., Liu J.-Y., Habu, H., (2013). Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys. 118(8), 5184—5189. DOI:10.1002/jgra.50508
76. Kulichkov S. N., Chunchuzov I. P., Popov O. E., Gorchakov G. I., Mishenin A. A., Perepelkin V. G., Bush G. A., Skorokhod A. I., Vinogradov Yu. A., Semutnikova E. G., Šepic J., Medvedev I. P., Gushchin R. A., Kopeikin V. M., Belikov I. B., Gubanova D. P., Karpov A. V., Tikhonov A. V. (2022). Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure and Applied Geophysics. 179, 1533—1548. DOI:10.1007/s00024-022-03046-4
77. Le Pichon A., Herry P., Mialle P., Vergoz J., Brachet N., Garcés M., Drob D., Ceranna L. (2005). Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett. 32(19), L19802. DOI:10.1029/2005GL023893
78. Le Pichon A., Pilger C., Ceranna L., Marchetti E., Lacanna G., Souty V., Vergoz J., Listowski C., Hernandez B., Mazet-Roux G., Dupont A., Hereil P. Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions. Scientific reports. 2021. 11. id:14464. DOI:10.1038/s41598-021-93942-x
79. Li Y. Q., Jacobson A. R., Carlos R. C., Massey R. S., Taranenko Y. N., Wu G., (1994). The blast wave of the Shuttle plume at ionospheric heights. Geophys. Res. Lett. 21(24), 2737—2740. DOI:10.1029/94GL02548
80. Lin C. H., Lin J. T., Chen C. H., Liu J. Y., Sun Y. Y., Kakinami Y., Matsumura M., Chen W. H., Liu H., Rau R. J. (2014). Ionospheric shock waves triggered by rockets. Ann. Geophys. 32(9), 1145—1152. DOI:10.5194/angeo-32-1145-2014
81. Lin C. C. H., Shen M.-H., Chou M.-Y., Chen C.-H., Yue J., Chen P.-C., Matsumura M. (2017). Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 44(15), 7578—7586. DOI:10.1002/2017GL074192
82. Luo Y., Guo Q., Zheng Y., Garmash K. P., Chernogor L. F., Shulga S. M. (2019). HF radiowave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National University, series «Radio Physics and Electronics». 30, 16—26. [in Russian]. DOI:10.26565/2311-0872-2019-30-02
83. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Zheng, Yu. (2020). Seismic-ionospheric effects: results of radio soundings at oblique incidence. Radio Physics and Radio Astronomy. 25(3), 218—230. [in Ukrainian]. DOI:10.15407/rpra25.03.218
84. Luo Y., Chernogor L. F. (2020). Electromagnetic effects of acoustic and atmospheric gravity waves in the near-earth atmosphere. Radio Physics and Radio Astronomy. 25(4), 290—307. DOI:10.15407/rpra25.04.290
85. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Yu. (2021). Dynamic processes in the magnetic field and in the ionosphere during the 30 August – 2 September, 2019 geospace storm. Annales Geophysicae. 39(4). DOI:10.5194/angeo-39-657-2021
86. Luo Y., Guo Q., Zheng Y., Garmash K. P., Chernogor L. F., Shulga S. N. (2021). Geospace storm effects on August 5—6, 2019. Space Sci. Tech. 27(2)(129), 45—69. DOI:10.15407/knit2021.02.045
87. Luo Y., Chernogor L. F., Garmash K. P. (2022). Magneto-Ionospheric Effects of the Geospace Storm of March 21–23, 2017. Kinematics and Physics of Celestial Bodies. 38(4), 210—229.
88. Mccrory R. A. (1967). Atmospheric Pressure Waves from Nuclear Explosions. J. Atmos. Sci. 24(4), 443—447. DOI:10.1175/1520-0469(1967)024%3C0443:APWFNE%3E2.0.CO;2
89. Mutschlecner J. P., Whitaker R. W. (2005). Infrasound from earthquakes. J. Geophys. Res. Atmos. 110(D1), D01108. DOI:10.1029/2004JD005067
90. Nishioka M., Tsugawa T., Kubota M., Ishii M. (2013). Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. 40(21), 5581—5586. DOI:10.1002/2013GL057963
91. Panasenko S. V., Otsuka Y., Van de Kamp M., Chernogor L. F., Shinbori A., Tsugawa T., Nishioka M. (2019). Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. 191, 105051. DOI: 10.1016/j.jastp.2019.05.015
92. Rose G., Oksman J., Kataja E. (1961). Round-the-World Sound Waves produced by the Nuclear Explosion on October 30, 1961, and their Effect on the Ionosphere at Sodankylä. Nature. 192(4808), 1173—1174. DOI:10.1038/1921173a0
93. Row R. V. (1967). Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res. 72(5), 1599—1610. DOI:10.1029/JZ072i005p01599
94. The Encyclopedia of Volcanoes (Second Edition), Academic Press, 2015. 1421 p. DOI:10.1016/B978-0-12-385938-9.00063-8
95. Watt A. D. International series of monographs in electromagnetic waves. New York: Pergamon, 1967. 724 p.
96. Wexler H., Hass W. A. (1962). Global atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res. 67(10), 3875—3887. DOI:10.1029/JZ067i010p03875
97. Yuen D. A., Scruggs M. A., Spera F. J., Zheng Y., Hu H., McNutt S. R., Thompson G., Mandli K., Keller B. R., Wei S. S., Peng Z., Zhou Z., Mulargia F., Tanioka Y. (2022). Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthquake Research Advances. 2(3), 100134. DOI:10.1016/j.eqrea.2022.100134
98. Zheng Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Luo Y. (2022). Disturbances in the ionosphere and distortion of radio wave characteristics that accompanied the super typhoon Lekima event of 4–12 August 2019. Journal of Geophysical Research: Space Physics. 127, e2022JA030553. DOI:10.1029/2022JA030553