Modeling of influence of meteor showers onto formation of space origin aerosol altitudinal density profiles in upper atmosphere

1Kozak, PM
1Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Space Sci. & Technol. 2024, 30 ;(5):36-53
https://doi.org/10.15407/knit2024.05.036
Publication Language: Ukrainian
Abstract: 
The model of space-origin aerosol formation in the atmosphere from meteor streams is proposed. The components of the model are the physical and kinematic parameters of the meteor shower, characteristics of the atmosphere, and the base equations of meteor physics: the equation of deceleration and the equation of energetic balance. The input parameters of a meteor shower are considered to be the meteor stream heliocentric orbit elements, the distribution of meteors by masses across and along the meteor stream, and the physical properties of meteoroids. For meteors of the sporadic background, the meteoroid influx was formed by a three-dimensional distribution: by masses of cosmic particles, their pre-atmospheric velocities, and radiant zenith angles. In the case of a meteor stream, just the radiant zenith angle, which is a function of time, plays a key role. The velocity of a meteor shower is obviously constant (statistical scattering can be neglected).
         The distribution by masses, which is described by the Pareto distribution, remains in the final equation of the aerosol density change dn/dt(t). However, at the same time, the meteor influx modification caused by the diurnal radiant’s zenith angle variation results in a shift of the distribution’s right tail, i.e., the maximal mass value of the space particle, which still remains an aerosol, not transforming into a meteor. It is shown that the influx of cosmic substances through a unit mesosphere area at an altitude of 100 km creates the altitudinal aerosol profile in the atmosphere from a meteor shower. This influx varies based on the geographic position of the area, meaning it depends on geographic coordinates.Besides, the substance influx into a fixed place of the atmosphere periodically changes during the day. It is clearly demonstrated that some meteor showers do not influence some parts of the planet since their radiants do not arise above the horizon and, accordingly, do not form an aerosol. After atmospheric selection of meteoroids into aerosols and meteors, the heights of stop (complete loss of the space velocity) of the aerosol particles, finally forming the altitudinal profile density dn/dt from the given meteor shower,are calculated. For obviousness, the results of all calculations are demonstrated for the Perseid meteor shower and Kyiv latitude.
Keywords: aerosol, aerosol concentration, meteor, meteor shower, modeling
References: 

1. Blaauw R. C., Campbell-Brown M. D., Weryk R. J. (2011). A meteoroid stream survey using the Canadian Meteor Orbit Radar. III. Mass distribution indices of six major meteor showers. Mon. Notic. Roy. Astron. Soc., 414, 3322-3329.
https://doi.org/10.1111/j.1365-2966.2011.18633.x

2. Britt D. T., Consolmagno G. J. (2003). Stony meteorite porosities and densities: a review of the data through 2001. Meteoritics and Planet. Sci., 38 (8), 1161-1180.
https://doi.org/10.1111/j.1945-5100.2003.tb00305.x

3. Drolshagen G., Moorhead A. V. (2019). The meteoroid impact hazard. Sources of meteors on earth and beyond. Part 5. Section 11. Eds G. O. Ryabova, D. J. Asher, M. D. Campbell-Brown. Cambridge: University Press, 90-115.

4. Campbell-Brown M. D., Jones J. (2006). Annual variation of sporadic radar meteor rates. Mon. Notic. Roy. Astron. Soc., 367, 709-716.
https://doi.org/10.1111/j.1365-2966.2005.09974.x

5. Hrgian A. Kh. (1969). Atmospheric physics. Leningrad: Hydrometeoizdst.

6. Janches D., Brunini C., Hormaechea J. L. (2019). Decade of sporadic meteoroid mass distribution indices in the southern hemisphere derived from SAAMER's meteor observations. Astron. J., 157 (6), 240 (10 p).
https://doi.org/10.3847/1538-3881/ab1b0f

7. Kozak P. M. (2003) A vector method for the determination of trajectory parameters and heliocentric orbit elements of a meteor in TV observations. Kinematics and Physics of Celestial Bodies, 19 (1), 62-76.

8. Kozak P. M., Kruchynenko V. G. (2011). Formation of the aerosol of space origin in earth's atmosphere. NASA Tech. Rep. "Meteoroids: The Smallest Solar System Bodies". Eds W. J. Cooke, D. E. Moser, B. F. Hardin, D. Janches. NASA/CP-2011-216469, 181-191.

9. Kozak P. M., Kruchynenkо V. G., Kruchenitsky G. M., Ivchenko V. M., Kozak L. V., Belokrinitskaya L. M., Taranukha Yu. G., Rozhilo O. O. (2010). Transformation of sporadic low-mass meteoroid component into the aerosol of the Earth's upper atmosphere. Kosm. nauka tehnol., 16 (4), 13-21.
https://doi.org/10.15407/knit2010.04.013

10. Kozak P. M., Luk'yanyk I. V., Kozak L. V., Stelya O. B. (2023). Using geodetic, geocentric, and topocentric coordinate systems in meteor astronomy and related tasks. Space Science and Technology, 29 (5), 69-78.
https://doi.org/10.15407/knit2023.05.069

11. Kozak P. M., Rozhilo O. O., Kruchynenko V. G., Kazantsev A. M., Taranukha Y. G. (2007). Results from 2002 Leonid meteor storm TV observations in Kyiv. Advs in Space Res., 39 (4), 619-623.
https://doi.org/10.1016/j.asr.2005.08.014

12. Kozak P., Stariy S. (2020). Determination of equatorial coordinates of bolide from observations with stationary low-sensitive home guard video camera. Bull. Taras Shevchenko Nat. Univ. Kyiv. Astronomy, 2 (62), 6-10.
https://doi.org/10.17721/BTSNUA.2020.62.16-20

13. Kozak P. M., Watanabe J. (2017). Upward-moving low-light meteor. I. Observation results. Mon. Notic. Roy. Astron. Soc.467 (1), 793-801.
https://doi.org/10.1093/mnras/stx008

14. Kruchynenko V. G. (2002). Influx of space bodies onto Earth in large mass interval. Kinematics and Physics of Celestial Bodies, 18 (2), 114-127.

15. Levin B. Yu. (1956). Physical theory of meteors and meteoric matter in the Solar system. Moscow: AN SSSR, 296 p.

16. Moorhead A. V., Auriane E., Brown P. G., Moser D. E., Cook W. J. (2019). Meteor shower forecasting in near-Earth space. J. Spacecraft and Rockets, 56, 1531-1545.
https://doi.org/10.2514/1.A34416

17. Öpik E. J. (1937). Researches on the physical theory of meteor phenomena. Publ. Observ. Astron. Tartu, 29 (5), 67 p.

18. Porubcan V., Hajduk A., Celovani G., Grassi G., Trivellone G. (1997). Mass distribution of the Lyrid meteoroid stream from forward-scatter meteor observation. Contrib. Astron. Observ. Skalnate Pleso, 27, 97-103.

19. Rendtel J. (2006). Visual sporadic meteor rates. WGN. The journal of the IMO, 34 (3), 71-76.

20. Spurný P., Betlem H., Jobse K., Koten P., van't Leven J. (2000). New type of radiation of bright Leonid meteors above 130 km. Meteoritics and Planet. Sci., 35 (5), 1109-1115.
https://doi.org/10.1111/j.1945-5100.2000.tb01497.x

21. Voloshchuk Y. I., Kashcheev B. L., Kruchynenko V. G. (1989). Meteors and meteor substance. Kiev: Naukova Dumka, 293 p.