COMBINATORIC METHOD FOR INTERVAL ESTIMATION OF A SPACECRAFT ATTITUDE BASED ON STAR TRACKER MEASUREMENTS
Heading:
1Gubarev, VF, 2Melnychuk, SV 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine 2Space Research Institute of the National Academy of Science of Ukraine and the National Space Agency of Ukraine, Kyiv, Ukraine |
Space Sci.&Technol. 2016, 22 ;(6):10-19 |
https://doi.org/10.15407/knit2016.06.010 |
Publication Language: Russian |
Abstract: We propose a method for finding interval estimates of a spacecraft attitude. The input data of the problem are measurements from star trackers. Systems with one, two or three sensors are considered. A comparison of the accuracy is made by the width of interval estimates of the orientation parameters.
|
Keywords: combinatoric method, guaranteed estimation of attitude, interval estimation, star tracker |
References:
1. Gubarev V. F., Melnychuk S. V.Guaranteed state estimation algorithms for linear systems in the presence of bounded noise. Journal of Automation and Information Sciences, No. 2, 26—34 (2015).
https://doi.org/10.1615/jautomatinfscien.v47.i3.10
2. Efimenko N. V. Mutual relations of internal coordinate systems of star sensors in the problem of accurate determination of spacecraft orientation. Kosm. nauka technol., 19 (6), 12—17 (2013).
https://doi.org/10.15407/knit2013.06.012
3. Efimenko N. V.Determining spacecraft orientation using information from two jointly processed star trackers. Kosm. nauka technol., 20 (3), 22—27 (2014).
https://doi.org/10.15407/knit2014.03.022
4. Zakharov A. I., Prokhorov M. E., Tuchin M. S., Zhukov A. O. Minimum Star Tracker Specifications Required to Achieve a Given Attitude Accuracy. Astrophysical Bulletin, 68(4), 507—520 (2013).
https://doi.org/10.1134/S199034131304010X
5. Davenport P.A vector approach in the algebra of rotations with applications. NASA Techn. Note, D4696 (1968).
6. Farrell J. L., Stuelpnagel J. C., Wessner R. H., Velman J. R., Brock J. E.A least square estimate of spacecraft attitude. SIAM Rev., 8 (3), 384—386 (1966).
https://doi.org/10.1137/1008080
7. Wahba G. A. Least squares estimate of spacecraft attitude. SIAM Rev., 7(3), 409—411 (1965).
https://doi.org/10.1137/1007077
https://doi.org/10.1615/jautomatinfscien.v47.i3.10
2. Efimenko N. V. Mutual relations of internal coordinate systems of star sensors in the problem of accurate determination of spacecraft orientation. Kosm. nauka technol., 19 (6), 12—17 (2013).
https://doi.org/10.15407/knit2013.06.012
3. Efimenko N. V.Determining spacecraft orientation using information from two jointly processed star trackers. Kosm. nauka technol., 20 (3), 22—27 (2014).
https://doi.org/10.15407/knit2014.03.022
4. Zakharov A. I., Prokhorov M. E., Tuchin M. S., Zhukov A. O. Minimum Star Tracker Specifications Required to Achieve a Given Attitude Accuracy. Astrophysical Bulletin, 68(4), 507—520 (2013).
https://doi.org/10.1134/S199034131304010X
5. Davenport P.A vector approach in the algebra of rotations with applications. NASA Techn. Note, D4696 (1968).
6. Farrell J. L., Stuelpnagel J. C., Wessner R. H., Velman J. R., Brock J. E.A least square estimate of spacecraft attitude. SIAM Rev., 8 (3), 384—386 (1966).
https://doi.org/10.1137/1008080
7. Wahba G. A. Least squares estimate of spacecraft attitude. SIAM Rev., 7(3), 409—411 (1965).
https://doi.org/10.1137/1007077