The ionospheric satellite cluster Ionosats
Heading:
1Ivchenko, VM, 2Korepanov, VYe., 3Lizunov, GV, 3Fedorov, OP, 4Yampolski, Yu.M 1Taras Shevchenko National University of Kyiv, Physical Faculty, Kyiv, Ukraine 2L’viv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, L’viv, Ukraine 3Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine 4Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine |
Kosm. nauka tehnol. 2007, 13 ;(3):055-066 |
https://doi.org/10.15407/knit2007.03.055 |
Publication Language: Ukrainian |
Abstract: Some proposals for the IONOSATS ionosphere space project, its scientific goals, onboard instruments and possibility of realization are presented. We propose to construct a space system for the long-term spatial-temporal monitoring of the main field and plasma parameters of the ionosphere for further development of fundamental conceptions of solar-terrestrial connections physics, nowcasting and forecast of Space Weather (SW) and diagnostics of natural and technogenic hazards using a cluster of three LEO microsatellites. The main project tasks are the following. 1. Scientific and methodological elaboration of the efficiency of the use of LEO satellites for SW monitoring, corresponding technological realization development and tests. 2. Systematic study of the dynamic response of the ionosphere to influences «from above» (solar and geomagnetic activity) and «from below» (meteorological, seismic and technologic processes). 3. Spatial-temporal monitoring of ionospheric disturbances with the aim to extract the signatures of natural and technogenic catastrophic events in the lower atmosphere and at the Earth's surface. 4. Synchronous operation of the existing sub-satellite electromagnetic and meteorological polygons. 5. Calibration of modern prognostic models of quiet and disturbed ionosphere. The IONOSATS project is proposed by the National Space Agency of Ukraine for the First European Space Program and for the Space Weather Program as a part of Global Monitoring for Environment and Security (GMES).
|
Keywords: ionosphere, plasma parameters, spatial-temporal monitoring |
References:
1. Alpert Ia. L. Waves and artificial bodies in the near-earth plasma, 214 p. (Nauka, Moscow, 1974) [in Russian].
2. Buchachenko A. L., Oraevskii V. N., Pokhotelov O. A., et al. Ionospheric precursors to earthquakes. Uspekhi Fizicheskikh Nauk, 166 (9), 1023—1029 (1996) [in Russian].
https://doi.org/10.3367/UFNr.0166.199609g.1023
https://doi.org/10.3367/UFNr.0166.199609g.1023
3. Danilov A. D., Kazimirovsky E. S., Vergasova G. V., Khachikyan G. Ya. Meteorological effects in the ionosphere, 271 p. (Gidrometeoizdat, Leningrad, 1987) [in Russian].
4. Dzyubenko N. I., Ivchenko V. N., Kozak L. V. Temperature variations in the thermosphere over the earthquake focuses as inferred from satellite data. Geomagnetizm i Aeronomiia, 43 (1), 126—131 (2003) [in Russian].
5. Ivchenko V. M., Kozak L. V., Venedyktov Yu. I., et al. The Geocosmos project for the Ukrainian Junior Satellite. Kosm. nauka tehnol., 10 (5-6), 17—21 (2004) [in Ukrainian].
6. Korepanov V. E., Negoda A. A., Ivchenko V. N., et al. Space scientific experiment "Variant" on board the satellite "Sich-1M". In: 1st Ukrainian Conference for Perspective Space Researches: Proceedings, Kiev, October 8—10, 2001, 51—58 (Kiev, 2001) [in Russian].
7. Korepanov V. Ye., Mykhailova Ye. D., Nozdrachov M. M. Temperature Condition Aboard the Interbol-1 Spacecraft. Kosm. nauka tehnol., 5 (1), 112—116 (1999) [in Ukrainian].
https://doi.org/10.15407/knit1999.01.112
https://doi.org/10.15407/knit1999.01.112
8. Korepanov V. Ye., Lytvynenko L. M., Lytvynov V. A., et al. Space experiments ground support electromagnetic polygon at Ukrainian Antarctic Station. Kosm. nauka tehnol., 10 (2-3), 74—80 (2004) [in Ukrainian].
9. Korepanov V., Negoda O., Lizunov G., et al. Project VARIANT: Measurements of Electromagnetic Fields and Currents in the Ionospheric Plasmas Aboard the Sich-1M Satellite. Kosm. nauka tehnol., 5 (5-6), 3—8 (1999) [in Ukrainian].
https://doi.org/10.15407/knit1999.05.003
https://doi.org/10.15407/knit1999.05.003
10. Liperovsky V. A., Pokhotelov O. A., and Shalimov S. L. Ionospheric precursors of earthquakes, 304 p. (Nauka, Moscow, 1992) [in Russian].
11. Marov M. Ya., Kolesnichenko A. V. Introduction to the Planetary Aeronomy, 456 p. (Nauka, Moscow, 1987) [in Russian].
12. Molchanov O. A. Low-frequency waves and induced radiation in the near-Earth plasma, 224 p. (Nauka, Moscow, 1985) [in Russian].
13. The scientific program of the project "Попередження": report on research "Program", Institute of Radio Astronomy of the NASU, Goskontrakt NKAU No. 7-39/96, 184 p. (Kharkov, 1997) [in Russian].
14. Report on the research work "Radiophysical sub-satellite ionospheric ionization" (code "Perspective-III"): Otchet po NIR, 208 p. (Kharkov, 1998) [in Russian].
15. Project "INTERBALL-Forecast": Technical proposal, 79 p. (NKAU, GKB «Juzhnoe», Dnepropetrovsk, 2002) [in Russian].
16. Russian-Ukrainian Scientific and Applied Project "Interball-Forecast": Науч. program with applications. (IKI RAN; IKI NKAU; NANU, 2001) [in Russian].
17. Soprunyuk P. M., Klimov S. I., Korepanov V. E. Electric fields in space plasma, 190 p. (Naukova dumka, Kyiv, 1994) [in Russian].
18. Sorokin V. M., Fedorovich G. V. The physics of slow MHD waves in the ionospheric plasma, 136 p. (Energoatomizdat, Moscow, 1982) [in Russian].
19. Fedorenko A. K., Lizunov G. V., Rotkel’ Kh. Satellite observations of quasi-wave atmospheric disturbances at heights of the F region caused by powerful earthquakes. Geomagnetizm i Aeronomiia, 45 (3), 403—410 (2005) [in Russian].
20. Frolov O. S., Dudnik A. V., Shevchenko V. A., et al. Detectors and multichannel electronics for satellite spectrometers of cosmic radiation. Visnyk Kyi'v. un-tu. Ser. Fizyko-matematychni nauky, Is. 3, 479—487 (2001) [in Ukrainian].
21. Chernogor L. F. Energetics of the Processes Occurring on the Earth, in the Atmosphere and Near-Earth Space in Connection with the Project "Early Warning". Kosm. nauka tehnol., 5 (1), 38—47 (1999) [in Russian].
https://doi.org/10.15407/knit1999.01.038
https://doi.org/10.15407/knit1999.01.038
22. Shuvalov V. A., Priymak A. I., Reznychenko N. P., et al. Contact diagnostics of the ionosphere and laboratory plasma. Kosm. nauka tehnol., 10 (2-3), 3—15 (2004) [in Russian].
23. Yampolski Yu. M. The system of satellite ionospheric sounding. In: 1st Ukrainian Conference for Perspective Space Researches: Abstracts, 58 (Kiev, 2001) [in Russian].
24. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. M., et al. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Physics and Radio Astronomy, 9 (3), 130 — 151 (2004) [in Russian].
25. Artru J., Longnonne P., Blanc E. Normal modes modeling of post-seismic ionospheric oscillations. Geophys. Res. Lett., 697—700 (2001).
https://doi.org/10.1029/2000GL000085
https://doi.org/10.1029/2000GL000085
26. Hayakawa M. (Ed.) Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes, 996 p. (TERRAPUB, Tokyo, 1999).
27. Beley V. S., Galushko V. G., Yampolski Yu. M. Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations. Radio Sci., 30 (6), 1739—1752 (1995).
https://doi.org/10.1029/95RS01992
https://doi.org/10.1029/95RS01992
28. Hayakawa M., Fujinawa Y. (Eds) Electromagnetic phenomena related to earthquake prediction. (TERRAPUB, Tokyo, 1994).
29. Francis S. H. Global propagation of atmospheric gravity waves: a review. J. Atmos. and Terr. Phys., 37, 1011 — 1054 (1975).
https://doi.org/10.1016/0021-9169(75)90012-4
https://doi.org/10.1016/0021-9169(75)90012-4
30. Galperin Yu. I., Hayakawa M. On the magnetospheric effects of experimental ground explosions observed from AUREOL-3. J. Geomagn. and Geoelec., 48, 1241 — 1263 (1996).
https://doi.org/10.5636/jgg.48.1241
https://doi.org/10.5636/jgg.48.1241
31. Galushko V. G., Beley V. S., Koloskov A. V., et al. Frequency-and-angular HF sounding and VHF ISR diagnostics of TIDs. Radio Sci., 38 (6), 1102 (2003).
https://doi.org/10.1029/2002RS002861
https://doi.org/10.1029/2002RS002861
32. Georges T. M. HF Doppler studies of traveling ionospheric disturbances. J. Atmos. and Terr. Phys., 30, 735—746 (1968).
https://doi.org/10.1016/S0021-9169(68)80029-7
https://doi.org/10.1016/S0021-9169(68)80029-7
33. Hines C. O. The upper atmosphere in motion. (American Geophys. Union, Washington, D. C., 1974).
https://doi.org/10.1029/GM018
https://doi.org/10.1029/GM018
34. Hocke K., Schlegel K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982—1995. Ann. Geophys., 14, 917—940 (1996).
35. Huang Y. N., Cheng K., Chen S. W. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci., 20, 897—906 (1985).
https://doi.org/10.1029/RS020i004p00897
https://doi.org/10.1029/RS020i004p00897
36. Jacobson A. R., Carlos R. C. Observations of acoustic-gravity waves in the thermosphere following Space Shuttle ascents. J. Atmos. Terr. Phys., 56, 525— 528 (1994).
https://doi.org/10.1016/0021-9169(94)90201-1
https://doi.org/10.1016/0021-9169(94)90201-1
37. Korepanov V. Study of electromagnetic precursors in ionosphere (WARNING Project). Phys. Chem. Earth, 23 (9-10), 969—973 (1998).
https://doi.org/10.1016/S0079-1946(98)00129-3
https://doi.org/10.1016/S0079-1946(98)00129-3
38. Korepanov V., Klimov S., Belyayev S., et al. International Space Station: study of near-surface environment. 57th International astronautical congress (Valencia, Spain, October, 2—6, 2006). CD publ., IAC 06- B4.3.09 (2006).
39. Korepanov V., Krasnosselskikh V., Lizunov G., et al. Experiment variant onboard Ukrainian satellite Sich-1M — first results. Abstracts of the 36th COSPAR Scientific Assembly (Beijing, China, July 16—23, 2006). CD publ., COSPAR2006-A-00628 (PSW1-0034-06) (2006).
40. Korepanov V., Negoda O., Lizunov G., et al. Project Variant: current and field measurements on board Sich-1M satellite. Adv. Space Res., 25 (7-8), 1337—1342 (2000).
https://doi.org/10.1016/S0273-1177(99)00642-0
https://doi.org/10.1016/S0273-1177(99)00642-0
41. Kramer H. J. Observation of the Earth and its environment. Survey of missions and sensors, 1982 p. (Springer, Berlin, New York, 2002).
https://doi.org/10.1007/978-3-642-56294-5
https://doi.org/10.1007/978-3-642-56294-5
42. Kushida Yo., Kushida R. Possibility of earthquake forecast by ground observation in the VLF band. J. Atmos. Electricity, 22 (3), 239—255 (2002).
43. Lizunov G., Hayakawa M. Atmospheric gravity waves and their role in lithosphere-troposphere-ionosphere interaction. IEEJ Transactions on Fundamentals and Materials, 124 (12), 1109—1120 (2004).
https://doi.org/10.1541/ieejfms.124.1109
https://doi.org/10.1541/ieejfms.124.1109
44. Manzini E., Hamilton K. Middle atmospheric traveling waves forced by latent and convective heating. J. Atmos. Sci., 50, 2180—2200 (1993).
https://doi.org/10.1175/1520-0469(1993)050<2180:MATWFB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<2180:MATWFB>2.0.CO;2
45. National space weather program. Strategic plan. Office of Federal Coordinator for Meteorological Services and Supporting Research FCM-P30-1995. (Washington, August 1995).
46. Pfister L., Chan K. R., Bui T. P., et al. Gravity waves generated by a tropical cyclone during the STEP tropical field program: a case study. J. Geophys. Res., 98, 8611—8638 (1993).
https://doi.org/10.1029/92JD01679
https://doi.org/10.1029/92JD01679
47. Rice C. J., Sharp L. R. Neutral atmospheric waves in the thermosphere and tropospheric weather systems. Geophys. Res. Lett., 4 (8), 315—318 (1977).
https://doi.org/10.1029/GL004i008p00315
https://doi.org/10.1029/GL004i008p00315
48. Rishbeth H., Garriot O. K. Introduction to ionospheric physics, 331 p. (Academic, New York, 1969).
49. Roberts D. H., Klobuchar J. A., Fougere P. F., Hendricson D. H. Large-amplitude traveling ionospheric disturbance produced be the May 18.1980 explosion of Mount St. Helene. J. Geophys. Res., 87, 6291—6301 (1982).
https://doi.org/10.1029/JA087iA08p06291
https://doi.org/10.1029/JA087iA08p06291
50. Rothkaehl H., Izhovkina N., Prutensky I., et al. Ionospheric disturbances generated by different natural processes and by human activity in Earth plasma environment. Ann. Geophys., Suppl. 47 (2-3), 1215—1226 (2004).
51. Sauli P., Boska J. Tropospheric events and possible related gravity wave activity effects on the ionosphere. J. Atmos. and Terr. Phys., 63, 945—950 (2001).
https://doi.org/10.1016/S1364-6826(00)00205-4
https://doi.org/10.1016/S1364-6826(00)00205-4
52. Hayakawa M., Molchanov O. A. (Eds) Seismo electromagnetics: lithosphere-atmosphere-ionosphere coupling, 477 p. (TERRAPUB, Tokyo, 2002).
53. Vaisberg O. On the determination of the spatial scale in the moving reference frame. Sov. J. Space Res., 12 (6), 1241 (1985).
54. Varshavskiy I. I., Kalikhman A. D. Ionospheric effects of ground industrial explosions. Geomagn. Aeron., 24, 211—216 (1984).
55. Withbroe G. L. Living with star. Space weather, 45—51 (Geophysical Monograph 125) (American Geophys. Union, Washington, D.C, 2001).