Use of the SeaWiFS data for the Black Sea observations
Heading:
1Korotaev, GK, 1Suetin, VS, 1Suslin, VS, 1Korolev, SN, 1Kucheryavyi, AA 1Marine Hydrophysical Institute of the National Academy of Sciences of Ukraine, Sevastopol, AR Crimea, Ukraine |
Kosm. nauka tehnol. 2002, 8 ;(2-3):221-227 |
https://doi.org/10.15407/knit2002.02.221 |
Publication Language: Russian |
Abstract: Not available
|
Keywords: oceanology, remote sensing of the Earth |
References:
1. Man'kovskii V. I., Vladimirov V. L., Afonin E. I., et al. Long Term Variability of Water Transparency in the Black Sea and the Factors Responsible for Its Strong Decline in the Late 1980s and Early 1990s: Preprint Morsk. Gidrofiz. In-t NAN Ukrainy, 32 p. (Sevastopol, 1996) [in Russian].
2. Suetin V. S., Suslin V. V., Korolev S. N., Kucheryavy A. A. Estimation of the variability of water optical properties in the Black sea in summer 1998 using the measurements by satellite instrument SeaWiFS. Morsk. Gidrofiz. Zh., No. 6, 44—54 (2002) [in Russian].
3. Suetin V. S., Suslin V. V., Kucheryavy A. A., et al. Peculiarities of data interpretation of the Black Sea remote optical observations by SeaWiFS. Morsk. Gidrofiz. Zh., No. 2, 71—80 (2001) [in Russian].
4. Burenkov V. I., Kopelevich O. V., Sheberstov S., et al. Bio-optical characteristics of the Aegean Sea retrieved from satellite ocean color data. In: Malanotte-Rizzoli P., Eremeev V. N. (Eds) The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems, 313—326 (Kluwer Acad. Publ., Netherlands, 1999).
https://doi.org/10.1007/978-94-011-4796-5_21
https://doi.org/10.1007/978-94-011-4796-5_21
5. Gordon H. R., Clark D. K., Brown J. W., et al. Phytoplankton pigment concentration in the Middle Atlantic Bight: comparison of ship determination and CZCS estimates. Appl. Opt., 22 (1), 20—36 (1983).
https://doi.org/10.1364/AO.22.000020
https://doi.org/10.1364/AO.22.000020
6. McClain C. R., Barnes R. A., Eplee R. E., et al. SeaWiFS Postlaunch Calibration and Validation Analyses. Part 2. NASA Technical Memo. 2000-206892, 10, 57 p. (2000).
7. McClain C. R., Cleave M. L., Feldman G. C., et al. Science quality SeaWiFS data for global biosphere research. Sea Technology, 39, 10—16 (1998).
8. Morel A. In-water and remote measurements of ocean color. Boundary-Layer Meterol., 18, 177—201 (1980).
https://doi.org/10.1007/BF00121323
https://doi.org/10.1007/BF00121323
9. O'Reilly J. E., Maritorena S., Mitchell B. G., et al. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24937—24953 (1998).
https://doi.org/10.1029/98JC02160
https://doi.org/10.1029/98JC02160
10. Roesler C. S., Perry M. J. In situ phytoplankton absorption, fluorometric emission, and paniculate backscattering spectra determined from reflectance. J. Geophys. Res., 100, 13279—13294 (1995).
https://doi.org/10.1029/95JC00455
https://doi.org/10.1029/95JC00455
11. Suslin V. V., Suetin V. S., Kucheryaviy A. A., Korolev S. N. Possibilities of the Black Sea bio-optical characteristics estimation from SeaWiFS data. In: Current problems in Optics of Natural Waters: ONW-1: Proc. Internat. conf., St.-Peterburbg, Russia, Sept 25-28, 2001, 222—227 (St.-Peterburbg, 2001).
12. Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton pigments, suspended sediment, and yellow substance in coastal waters. Appl. Optics, 33 (12), 2369—2378 (1994).
https://doi.org/10.1364/AO.33.002369
https://doi.org/10.1364/AO.33.002369